Basit öğe kaydını göster

dc.contributor.advisorKoçkar, Benat
dc.contributor.authorYerlitaş, Mustafa
dc.date.accessioned2022-10-20T08:05:53Z
dc.date.issued2022
dc.date.submitted2022-05-25
dc.identifier.citation[1] J. Ma, I. Karaman, and R. D. Noebe, “High temperature shape memory alloys,” International Materials Reviews, vol. 55, no. 5, pp. 257–315, Sep. 2010. [2] D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 221, no. 4, pp. 535–552, Apr. 2007. [3] J. M. Jani, M. Leary, and A. Subic, “Shape Memory Alloys in Automotive Applications,” Applied Mechanics and Materials, vol. 663, pp. 248–253, Oct. 2014. [4] F. el Feninat, G. Laroche, M. Fiset, and D. Mantovani, “Shape Memory Materials for Biomedical Applications,” Advanced Engineering Materials, vol. 4, no. 3, pp. 91–104, Mar. 2002. [5] K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory alloys,” Progress in Materials Science, vol. 50, no. 5, pp. 511–678, Jul. 2005. [6] B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, J. Sharp, and C.-J. (Mike) Yu, “Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy,” Acta Materialia, vol. 56, no. 14, pp. 3630–3646, Aug. 2008. [7] J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Materials & Design (1980-2015), vol. 56, pp. 1078–1113, Apr. 2014. [8] H. O. Tugrul, H. H. Saygili, M. S. Velipasaoglu, and B. Kockar, “Comparison of the transformation behavior of cold rolling with aging and hot extrusion with aging processed Ni 50.3 Ti 29.7 Hf 20 high temperature shape memory alloy,” Smart Materials and Structures, vol. 28, no. 10, p. 105029, Oct. 2019. [9] G. S. Firstov, J. van Humbeeck, and Yu. N. Koval, “High Temperature Shape Memory Alloys Problems and Prospects,” Journal of Intelligent Material Systems and Structures, vol. 17, no. 12, pp. 1041–1047, Dec. 2006. [10] M. Ataei, A. Zarei-Hanzaki, and A. Shamsolhodaei, “Shape memory response and mechanical properties of warm deformed NiTi intermetallic alloy,” Materials Science and Engineering: A, vol. 680, pp. 291–296, Jan. 2017. [11] N. Babacan, M. Bilal, C. Hayrettin, J. Liu, O. Benafan, and I. Karaman, “Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 hightemperature shape memory alloy,” Acta Materialia, vol. 157, pp. 228–244, Sep. 2018. [12] M. Prasher, D. Sen, R. Tewari, P. S. R. Krishna, P. D. Babu, and M. Krishnan, “Effect of Hf solute addition on the phase transformation behavior and hardness of a Ni-rich NiTi alloy,” Materials Chemistry and Physics, vol. 247, p. 122890, Jun. 2020. [13] H. H. Saygili, H. O. Tugrul, and B. Kockar, “Effect of Aging Heat Treatment on the High Cycle Fatigue Life of Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy,” Shape Memory and Superelasticity, vol. 5, no. 1, pp. 32–41, Mar. 2019. [14] Velipasaoglu Mustafa Sefa, “The Determination of The Functional Fatigue Life of High Temperature Shape Memory Alloys After Cold Rolling Process,” Graduate School of Science and Engineering of Hacettepe University, Ankara, 2020. [15] K. Otsuka and X. Ren, “Recent developments in the research of shape memory alloys,” Intermetallics (Barking), vol. 7, no. 5, pp. 511–528, May 1999. [16] W. Abuzaid and H. Sehitoglu, “Functional fatigue of Ni50.3Ti25Hf24.7 – Heterogeneities and evolution of local transformation strains,” Materials Science and Engineering: A, vol. 696, pp. 482–492, Jun. 2017. [17] D. C. Lagoudas, Shape Memory Alloys, vol. 1. Boston, MA: Springer US, 2008. [18] D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 221, no. 4, pp. 535–552, Apr. 2007. [19] W. Abuzaid and H. Sehitoglu, “Functional fatigue of Ni50.3Ti25Hf24.7 – Heterogeneities and evolution of local transformation strains,” Materials Science and Engineering: A, vol. 696, pp. 482–492, Jun. 2017. [20] T. B. Massalski, “Solid-state transformations in copper-based alloys,” Metals Technology, vol. 7, no. 1, pp. 300–304, Jan. 1980. [21] R. Dasgupta, “A look into Cu-based shape memory alloys: Present scenario and future prospects,” Journal of Materials Research, vol. 29, no. 16, pp. 1681–1698, Aug. 2014. [22] Saygili Hasan Huseyin, “The Development of a fatigue test machine to investigate the functional fatigue life of high temperature shape memory alloys and the determination of the functional fatigue life of these alloys,” Graduate School of Science and Engineering of Hacettepe University, Ankara, 2018. [23] T. Maruyama and H. Kubo, “Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing, and applications,” in Shape Memory and Superelastic Alloys, Elsevier, 2011, pp. 141–159. [24] H. E. Karaca et al., “Shape memory behavior of high strength NiTiHfPd polycrystalline alloys,” Acta Materialia, vol. 61, no. 13, pp. 5036–5049, Aug. 2013. [25] H. Y. Kim, T. Jinguu, T. Nam, and S. Miyazaki, “Cold workability and shape memory properties of novel Ti–Ni–Hf–Nb high-temperature shape memory alloys,” Scripta Materialia, vol. 65, no. 9, pp. 846–849, Nov. 2011. [26] X. L. Meng, W. Cai, Y. D. Fu, J. X. Zhang, and L. C. Zhao, “Martensite structure in Ti–Ni–Hf–Cu quaternary alloy ribbons containing (Ti,Hf)2Ni precipitates,” Acta Materialia, vol. 58, no. 10, pp. 3751–3763, Jun. 2010. [27] X. L. Meng, W. Cai, K. T. Lau, L. C. Zhao, and L. M. Zhou, “Phase transformation and microstructure of quaternary TiNiHfCu high temperature shape memory alloys,” Intermetallics (Barking), vol. 13, no. 2, pp. 197–201, Feb. 2005. [28] H. E. Karaca et al., “Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy,” Acta Materialia, vol. 61, no. 19, pp. 7422–7431, Nov. 2013. [29] D. Golberg et al., “Characteristics of Ti50Pd30Ni20 high-temperature shape memory alloy,” Intermetallics (Barking), vol. 3, no. 1, pp. 35–46, Jan. 1995, [30] O. Benafan et al., “Shape memory alloy actuator design: CASMART collaborative best practices and case studies,” International Journal of Mechanics and Materials in Design, vol. 10, no. 1, pp. 1–42, Mar. 2014. [31] E. T. F. Chau, C. M. Friend, D. M. Allen, J. Hora, and J. R. Webster, “A technical and economic appraisal of shape memory alloys for aerospace applications,” Materials Science and Engineering: A, vol. 438–440, pp. 589–592, Nov. 2006, [32] L. McDonald Schetky, “Shape memory alloy applications in space systems,” Materials & Design, vol. 12, no. 1, pp. 29–32, Feb. 1991. [33] J. van Humbeeck, “Non-medical applications of shape memory alloys,” Materials Science and Engineering: A, vol. 273–275, pp. 134–148, Dec. 1999. [34] A. W. Young, R. W. Wheeler, N. A. Ley, O. Benafan, and M. L. Young, “Microstructural and Thermomechanical Comparison of Ni-Rich and Ni-Lean NiTi-20 at. % Hf High Temperature Shape Memory Alloy Wires,” Shape Memory and Superelasticity, vol. 5, no. 4, pp. 397–406, Dec. 2019. [35] S. Barbarino, E. I. Saavedra Flores, R. M. Ajaj, I. Dayyani, and M. I. Friswell, “A review on shape memory alloys with applications to morphing aircraft,” Smart Materials and Structures, vol. 23, no. 6, p. 063001, Jun. 2014. [36] R. HOLTZ, “Fatigue thresholds of Ni-Ti alloy near the shape memory transition temperature,” International Journal of Fatigue, vol. 21, pp. 137–145, Sep. 1999, [37] N. Simiriotis, M. Fragiadakis, J. F. Rouchon, and M. Braza, “Shape control and design of aeronautical configurations using shape memory alloy actuators,” Computers & Structures, vol. 244, p. 106434, Feb. 2021. [38] C. M. Denowh and D. A. Miller, “Thermomechanical training and characterization of Ni–Ti–Hf and Ni–Ti–Hf–Cu high temperature shape memory alloys,” Smart Materials and Structures, vol. 21, no. 6, p. 065020, Jun. 2012. [39] K. C. Atli, I. Karaman, R. D. Noebe, G. Bigelow, and D. Gaydosh, “Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy,” Smart Materials and Structures, vol. 24, no. 12, p. 125023, Dec. 2015. [40] B. Amin-Ahmadi, T. Gallmeyer, J. G. Pauza, T. W. Duerig, R. D. Noebe, and A. P. Stebner, “Effect of a pre-aging treatment on the mechanical behaviors of Ni50.3Ti49.7−xHfx (x ≤ 9 at. %) Shape memory alloys,” Scripta Materialia, vol. 147, pp. 11–15, Apr. 2018. [41] M. I. Khan, H. Y. Kim, Y. Namigata, T. Nam, and S. Miyazaki, “Combined effects of work hardening and precipitation strengthening on the cyclic stability of TiNiPdCu-based high-temperature shape memory alloys,” Acta Materialia, vol. 61, no. 13, pp. 4797–4810, Aug. 2013. [42] H. E. Karaca, E. Acar, H. Tobe, and S. M. Saghaian, “NiTiHf-based shape memory alloys,” Materials Science and Technology, vol. 30, no. 13, pp. 1530–1544, Nov. 2014. [43] Y. Wang, “The tensile behavior of Ti36Ni49Hf15 high temperature shape memory alloy,” Scripta Materialia, vol. 40, no. 12, pp. 1327–1331, May 1999. [44] S. Besseghini, E. Villa, and A. Tuissi, “NiTiHf shape memory alloy: effect of aging and thermal cycling,” Materials Science and Engineering: A, vol. 273–275, pp. 390–394, Dec. 1999. [45] D. R. Angst, P. E. Thoma, and M. Y. Kao, “The Effect of Hafnium Content on the Transformation Temperatures of Ni 49 Ti 51-x Hf x. Shape Memory Alloys,” Journal de Physique IV, vol. 05, no. C8, pp. C8-747-C8-752, Dec. 1995. [46] P. E. T. M. Y. K. and D. R. A. D. Abu Judom, “High transformation temperature shape memory alloy,” 1992. [47] M. Frost, B. Benešová, H. Seiner, M. Kružík, P. Šittner, and P. Sedlák, “Thermomechanical model for NiTi-based shape memory alloys covering macroscopic localization of martensitic transformation,” International Journal of Solids and Structures, vol. 221, pp. 117–129, Jun. 2021. [48] D. C. Lagoudas, D. A. Miller, L. Rong, and P. K. Kumar, “Thermomechanical fatigue of shape memory alloys,” Smart Materials and Structures, vol. 18, no. 8, p. 085021, Aug. 2009. [49] O. W. Bertacchini, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe, “Thermomechanical cyclic loading and fatigue life characterization of nickel rich NiTi shape-memory alloy actuators,” Mar. 2008, p. 692916. [50] H. Hosoda et al., “Cold rolling of B2 intermetallics,” Journal of Alloys and Compounds, vol. 302, no. 1–2, pp. 266–273, Apr. 2000. [51] M. E. Mitwally and M. Farag, “Effect of cold work and annealing on the structure and characteristics of NiTi alloy,” Materials Science and Engineering: A, vol. 519, no. 1–2, pp. 155–166, Aug. 2009. [52] N. A. Ley, R. W. Wheeler, O. Benafan, and M. L. Young, “Characterization of Thermomechanically Processed High-Temperature Ni-Lean NiTi–20 at. % Hf Shape Memory Wires,” Shape Memory and Superelasticity, vol. 5, no. 4, pp. 476– 485, Dec. 2019. [53] O. Karakoc, C. Hayrettin, D. Canadinc, and I. Karaman, “Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys,” Acta Materialia, vol. 153, pp. 156–168, Jul. 2018. [54] A. Ahadi, E. Rezaei, and A. Karimi Taheri, “Effect of hot rolling on microstructure and transformation cycling behaviour of equiatomic NiTi shape memory alloy,” Materials Science and Technology, vol. 28, no. 6, pp. 727–732, Jun. 2012. [55] O. Akgul, H. O. Tugrul, and B. Kockar, “Effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy,” Journal of Materials Research, vol. 35, no. 12, pp. 1572–1581, Jun. 2020.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/26956
dc.description.abstractShape Memory Alloys (SMAs) are special materials due to their shape recovery behaviors. SMAs remember their original shape after being deformed in their low temperature martensite phase and then heated back to their high temperature austenite phase. Thus, SMAs can be utilized as actuators in aerospace industry. NiTi based SMAs are widely used ones due to their high shape recovery and work output ability against applied load. However, their transformation temperatures (TTs) are lower than 100 ˚C and this limits their application area. There is a strong desire to increase TTs of SMAs for making them suitable candidates for high temperature applications. Nevertheless, as their working temperatures increase with the increase in TTs, the cyclic stability of the alloys starts to decrease due to the decrease in the resistance to plastic deformation via dislocation formation. As the martensite-austenite transformation takes place, dislocations, which are formed with the thermal and/or mechanical cycles pin the martensite/austenite boundary. Therefore, SMA is not able to demonstrate full shape recovery due to plastic deformation, which also leads to the presence of retained martensite. There are several ways to raise TTs of NiTi binary alloys and to provide cyclic stability such as adding ternary element and applying heat treatments. The most promising additional element is Hf due to its lower cost and its effect in increasing the TTs to very high levels. Furthermore, it should be noted that NiTiHf ternary alloys are not only known as high temperature shape memory alloys (HTSMAs) but also high strength alloys. In this study, Ni50.1Ti19.9Hf30 (at%) was used due to its very high TTs and strength. Although NiTiHf alloys have very good properties as mentioned before, they lose these properties at high temperatures. Therefore, thermo-mechanical heat treatments were applied to very Hf-rich Ni50.1Ti19.9Hf30 (at%) HTSMA to enhance its high temperature, functional and shape memory properties (SMPs). The alloy was first homogenized (H) and then warm rolled (WRed) at 3 different temperatures via following 2 different thickness reductions. Functional fatigue experiments (FFE) were conducted on homogenized and on each warm rolled sample. The effect of rolling temperature together with the percentage of thickness reduction on SMPs such as TTs (Austenite start (As) and finish (Af), martensite start (Ms) and finish (Mf) temperatures), actuation (εact) and irrecoverable strains(εirr) was revealed by comparing the WRed samples with the H one. The hot extruded alloy was homogenized at 1050 ˚C for 2 hours and then the slices, which were cut from the extruded billet, were WRed at 500°C with 2% thickness reduction, at 800°C and 900°C with 10% thickness reduction. TTs of all samples were measured by Differential Scanning Calorimetry (DSC) to determine the effect of warm rolling. Then FFEs were conducted using dog bone shape tensile specimens. The samples were loaded to 200MPa constant stress level and thermally cycled between 250°C and 700°C. All results, which were gathered from DSC and FFE, were compared. One of the most promising findings in this study was the effect of warm rolling on the stability of the functional properties of Ni50.1Ti19.9Hf30 (at%) alloy. Actuation strain (εact) values were found to be quite low but very stable throughout the FFE cycles. Moreover, TTs did not decrease significantly with warm rolling process.tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectHigh temperature shape memory alloystr_TR
dc.subjectFunctional fatiguetr_TR
dc.subjectWarm rollingtr_TR
dc.subjectThermal hysteresistr_TR
dc.subjectTransformation temperaturestr_TR
dc.subjectActuation straintr_TR
dc.subject.lcshMakina mühendisliğitr_TR
dc.titleRole Of Warm Rollıng Process On The Cyclıc Stabılıty Of Hıgh-Hf Content Nıtıhf Shape Memory Alloystr_en
dc.title.alternativeYüksek Hf İçerikli Nitihf Şekil Hafızalı Alaşımların Çevrimsel Kararlılığı Üzerindeki Sıcak Haddeleme İşleminin Rolütr_tr
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetŞekil Hafızalı Alaşımlar (ŞHA'lar), şekil geri kazanma davranışlarına sahip olmaları nedeniyle özel malzemelerdir. ŞHA’lar düşük sıcaklıktaki martensit fazında deforme olduktan sonra yüksek sıcaklıktaki östenit fazlarına geri ısıtıldıklarında başlangıç şekillerine geri dönebilir. Bu özelliklerinden dolayı, ŞHA’lar havacılık endüstrisinde eyleyici olarak kullanılabilirler. NiTi tabanlı ŞHA’lar, uygulanan yük karşısındaki yüksek şekil geri kazanım ve iş yapabilme özellikleri nedeniyle yaygın olarak kullanılır. Fakat dönüşüm sıcaklıklarının 100 ˚C'nin altında olması sebebiyle uygulama alanlarını kısıtlıdır. Bu alaşımların yüksek sıcaklık uygulamalarında kullanılabilmesi için dönüşüm sıcaklıklarının arttırılması büyük önem arz etmektedir. Bununla birlikte, dönüşüm sıcaklıkları arttıkça, plastik deformasyona karşı olan dirençlerinin azalması nedeniyle çevrimsel kararlılık azalmaya başlar. Martensit- östenit dönüşümü gerçekleştikçe termal ve/veya mekanik çevrimler sırasında oluşan dislokasyonlar martensit/östenit sınırının hareketini kısıtlar. Dönüşemeyen martensit oluşumuna sebep olan plastik deformasyon ŞHA’nın şeklini bütünüyle geri kazanmasını engeller. İkili NiTi şekil hafızalı alaşımların dönüşüm sıcaklıklarını yükseltmenin üçüncü element eklemek ve ısıl işlem uygulamak gibi birkaç yolu vardır. Düşük maliyeti ve dönüşüm sıcaklıklarının çok yüksek seviyelere çıkarmadaki etkisi nedeniyle gelecek vadeden element Hf’dir. Üçlü NiTiHf şekil hafızalı alaşımların sadece yüksek sıcaklık şekil hafızalı alaşımlar (YSŞHA’lar) olarak değil, aynı zamanda yüksek mukavemetli alaşımlar olarak da bilinir. Bu çalışmada, çok yüksek dönüşüm sıcaklıkları ve mukavemeti nedeniyle Ni50.1Ti19.9Hf30 (at%) kullanılmıştır. Daha önce bahsedildiği gibi üçlü NiTiHf alaşımları çok iyi şekil hafıza özelliklere sahip olmalarına rağmen, yüksek sıcaklıkta bu özelliklerini kaybederler. Bu nedenle, yüksek sıcaklık, fonksiyonel ve şekil hafıza özelliklerini geliştirmek için Hf bakımından zengin Ni50.1Ti19.9Hf30 YSŞHA’ya termo-mekanik ısıl işlemler uygulanmıştır. Alaşım önce homojenize edilmiş ve ardından 3 farklı sıcaklıkta 2 farklı kalınlık inceltme yüzdesi ile haddelenmiştir. Homojenize edilmiş ve termo-mekanik olarak işlem görmüş numunelerin her biri fonksiyonel yorulma deneylerine tâbi tutulmuştur. Haddeleme sıcaklığı ile kalınlık inceltme yüzdesinin; dönüşüm sıcaklıkları, eyleyici gerinimi ve geri dönüşemeyen gerinim gibi şekil hafıza özellikleri üzerine olan etkisi, homojenize edilmiş ve sıcak haddelenmiş numunelerin karşılaştırılması ile ortaya çıkartılmıştır. Sıcak ekstrüde edilmiş alaşım, 1050 ˚C’de 2 saat homojenize edildikten sonra homojenize edilmiş kütükten kesilen dilimler 500°C sıcaklıkta %2, 800°C ve 900°C sıcaklıklarda ise %10 kalınlıkta azalma sağlanarak sıcak haddelenmiştir. Sıcak haddelenmenin etkisini belirlemek için, tüm numunelerin dönüşüm sıcaklıkları (Östenit Başlangıç, Östenit Bitiş, Martensit Başlangıç ve Martensit Bitiş sıcaklıkları) Diferansiyel Taramalı Kalorimetre (DTK) ile ölçülmüştür. Daha sonra köpek kemiği şeklindeki çekme numuneleri kullanılarak fonksiyonel yorulma deneyleri (FYD) gerçekleştirilmiştir. FYD’leri 200 MPa sabit gerilim altında ve 250°C ve 700°C arasındaki termal çevrimde yapılmıştır. DTK ve FYD’den elde edilen tüm veriler karşılaştırılmıştır. Bu çalışmada gelecek vadeden bulgulardan birisi, sıcak haddelemenin Ni50.1Ti19.9Hf30 (%at) alaşımının fonksiyonel özelliklerinin kararlı hale getirmesi üzerindeki etkisidir. Numunelerin eyleci gerinimlerinin FYD’deki çevrimler boyunca çok kararlı, eyleyici gerinim değerlerinin ise oldukça düşük olduğu saptanmıştır. Ayrıca, sıcak haddeleme işlemi sonrasında dönüşüm sıcaklıklarında önemli bir düşüş gözlemlenmemiştir.tr_TR
dc.contributor.departmentMakine Mühendisliğitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2022-10-20T08:05:53Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster