Basit öğe kaydını göster

dc.contributor.advisorGökcen, Dinçer
dc.contributor.authorTanrıver, Metin Furkan
dc.date.accessioned2021-10-13T07:13:29Z
dc.date.issued2021
dc.date.submitted2021-01-25
dc.identifier.citation[1] IPCC, & Stocker, Thomas & Qin, Dawei & Plattner, Gian-Kasper & Tignor, M. & Allen, S.K. & Boschung, J. & Nauels, Alexander & Xia, Y. & Bex, V. & Midgley, P.M. (2013). The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2013. [2] Kerr, R. A. (1995). Sun's Role in Warming Is Discounted. Science, 268(5207), 28-29. 10.1126/science.268.5207.28. [3] Hansen, James & Sato, Makiko & Ruedy, R. & Lo, Kw & Lea, David & Medina-Elizalde, Martín. (2006). Global temperature change. Proceedings of the National Academy of Sciences of the United States of America. 103. 14288-93. 10.1073/pnas.0606291103. [4] NOAA Climate.gov, Combined Heating Influence by Greenhouse Gasses, https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide (Erişim tarihi: 7 Ekim 2020). [5] NASA, Global Annual Mean Surface Air Temperature Change, https://data.giss.nasa.gov/gistemp/graphs_v4/ (Erişim tarihi: 7 Ekim 2020). [6] Lenssen, Nathan & Schmidt, Gavin & Hansen, James & Menne, Matthew & Persin, Avraham & Ruedy, R. & Zyss, Daniel. (2019). Improvements in the uncertainty model in the Goddard Institute for Space Studies Surface Temperature (GISTEMP) analysis. Journal of Geophysical Research: Atmospheres. 124. 10.1029/2018JD029522. [7] Lee, T., Markowitz, E., Howe, P. et al. Predictors of public climate change awareness and risk perception around the world. Nature Clim Change 5, 1014–1020 (2015). 10.1038/nclimate2728. [8] Blakers, A. (1991). The Role of photovoltaics in reducing greenhouse gas emissions: Opportunities and benefits for the Australian photovoltaic industry: A study prepared on behalf of Unisearch Ltd. Canberra: The Department. [9] Green, Martin. (2003). Third Generation Photovoltaics: Advanced Solar Energy Conversion. Physics Today. 57. 71-72. 10.1063/1.1878345. [10] Weisser, Daniel. (2007). A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy. 32. 1543-1559. 10.1016/j.energy.2007.01.008. [11] Map obtained from the “Global Solar Atlas 2.0, a free, web-based application is developed and operated by the company Solargis s.r.o. on behalf of the World Bank Group, utilizing Solargis data, with funding provided by the Energy Sector Management Assistance Program (ESMAP). For additional information: https://globalsolaratlas.info. [12] Lewis, N. S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271). 10.1126/science.aad1920. [13] Blakers, A. & Green, Martin. (1986). 20% Efficiency Silicon Solar Cells. Applied Physics Letters. 48. 215 - 217. 10.1063/1.96799. [14] NREL, Panasonic PV Lifetime installation at NREL, https://www.nrel.gov/pv/assets/images/panasonic-installation.jpg (Erişim tarihi: 7 Ekim 2020). [15] Goetzberger, A. & Hoffmann, V.U. (2005). Photovoltaic Solar Energy Generation. Fraunhofer ISE. [16] Akimov, Yuriy & Koh, Wee Shing. (2010). Resonant and nonresonant plasmonic nanoparticle enhancement for thin-film silicon solar cells. Nanotechnology. 21. 235201. 10.1088/0957-4484/21/23/235201. [17] Edoff, M. (2012). Thin Film Solar Cells: Research in an Industrial Perspective. Ambio. 41 Suppl 2. 112-8. 10.1007/s13280-012-0265-6. [18] Green, Martin. (2001). Third generation photovoltaics: recent theoretical progress. 17th European Photovoltaic Solar Energy Conf., Munich 2001. [19] Peter Amalathas, Amalraj & Alkaisi, Maan. (2019). Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines. 10. 619. 10.3390/mi10090619. [20] Mallick, Shrestha & Agrawal, Mukul & Peumans, Peter. (2010). Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Optics express. 18. 5691-706. 10.1364/OE.18.005691. [21] Polman, Albert & Knight, Mark & Garnett, Erik & Ehrler, Bruno & Sinke, Wim. (2016). Photovoltaic Materials - Present Efficiencies and Future Challenges. Science. 352. aad4424-aad4424. 10.1126/science.aad4424. [22] Campbell, Patrick & Green, Martin. (1987). Light trapping properties of pyramidally textured surfaces. Journal of Applied Physics. 62. 243 - 249. 10.1063/1.339189. [23] Smith, Arlynn & Rohatgi, Ashish. (1993). Ray tracing analysis of inverted pyramid texturing geometry for high efficiency silicon solar cells. Solar Energy Materials and Solar Cells. 29. 37-49. 10.1016/0927-0248(93)90090-P. [24] Kim, Kyunghae & Dhungel, Suresh Kumar & Jung, Sungwook & Mangalaraj, Devanesan & yi, Joonjeong. (2008). Texturing of large area multi-crystalline silicon wafers through different chemical approaches for solar cell fabrication. Solar Energy Materials and Solar Cells. 92. 960-968. 10.1016/j.solmat.2008.02.036. [25] Ganesan, Kumaravelu & Alkaisi, Maan & Bittar, Antoine & Macdonald, Daniel & Zhao, J. (2004). Damage studies in dry etched textured silicon surfaces. Current Applied Physics. 4. 108-110. 10.1016/j.cap.2003.10.008. [26] Atwater, Harry & Polman, Albert. (2010). Plasmonics for Improved Photovoltaic Devices. Nature materials. 9. 865. 10.1038/nmat2866. [27] Raliya, Ramesh & Saha, Debajit & Chadha, Tandeep & Raman, Baranidharan & Biswas, Pratim. (2017). Non-invasive aerosol delivery and transport of gold nanoparticles to the brain. Scientific Reports. 7. 10.1038/srep44718. [28] Maier, Stefan & Atwater, Harry. (2005). Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. Journal of Applied Physics. 98. 10.1063/1.1951057. [29] Sarid, Dror & Challener, William. (2010). Modern Introduction to Surface Plasmons, Cambridge, UK: Cambridge University Press 1-371. 10.1017/CBO9781139194846. [30] Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C. (2003). The Optical Properties of Metal Nanoparticles: The Influence of Size Shape and Dielectric Environment. The Journal of Physical Chemistry B. 107. 668-677. [31] Pillai, Supriya & Green, Martin. (2012). Harnessing plasmonics for solar cells. Nature Photonics - NAT PHOTONICS. 6. 130-132. 10.1038/nphoton.2012.30. [32] Pillai, Supriya & Green, Martin. (2010). Plasmonics for photovoltaic applications. Solar Energy Materials and Solar Cells. 94. 1481-1486. 10.1016/j.solmat.2010.02.046. [33] Mertz, Jerome. (2000). Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: A unified description. Journal of The Optical Society of America B-optical Physics - J OPT SOC AM B-OPT PHYSICS. 17. 10.1364/JOSAB.17.001906. [34] Zhang, Debao & Yang, Xifeng & Hong, X.K. & Liu, Yushen & Feng, Jinfu. (2014). Aluminum nanoparticles enhanced light absorption in silicon solar cell by surface plasmon resonance. Optical and Quantum Electronics. 47. 1421-1427. 10.1007/s11082-014-0103-0. [35] Spinelli, Pierpaolo & Polman, A. (2012). Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles. Optics express. 20 Suppl 5. A641-54. 10.1364/OE.20.00A641. [36] Shockley, W., & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics, 32(3), 510-519. doi:10.1063/1.1736034. [37] Liu, Tianji & Vazquez Besteiro, Lucas & Wang, Zhiming & Govorov, Alexander. (2018). Generation of Hot Electrons in Nanostructures incorporating Conventional and Unconventional Plasmonic Materials. Faraday Discussions. 214. 10.1039/C8FD00145F. [38] Clavero, Cesar. (2014). Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics. 8. 95-103. 10.1038/nphoton.2013.238. [39] Klimov, Vasily. (2014). Nanoplasmonics. 10.1201/b15442. [40] Haug, Franz-Josef & Söderström, Thomas & Cubero, Oscar & Terrazzoni-Daudrix, V. & Ballif, Christophe. (2008). Plasmonic absorption in textured silver back reflectors of thin film solar cells. Journal of Applied Physics. 104. 064509 - 064509. 10.1063/1.2981194. [41] Paetzold, Ulrich & Moulin, Etienne & Pieters, Bart & Carius, Reinhard & Rau, Uwe. (2011). Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Optics express. 19 Suppl 6. A1219-30. 10.1364/OE.19.0A1219. [42] Pillai, Supriya & Catchpole, Kylie & Trupke, Thorsten & Green, Martin. (2007). Surface plasmon enhanced silicon solar cells. Journal of Applied Physics. 101. 093105-093105. 10.1063/1.2734885. [43] Schaadt, D.M. & Feng, B. & Yu, E.T. (2005). Enhanced Semiconductor Optical Absorption via Surface Plasmon Excitation in Metal Nanoparticles. Applied Physics Letters. 86. 063106. 10.1063/1.1855423. [44] Bohren, Craig F., and Donald R. Huffman. (2008) Absorption and scattering of light by small particles. John Wiley & Sons. [45] Maier, Stefan. (2007). Plasmonics: Fundamentals and Applications. 10.1007/0-387-37825-1. [46] Liu, Xin & Swihart, Mark. (2014). ChemInform Abstract: Heavily-Doped Colloidal Semiconductor and Metal Oxide Nanocrystals: An Emerging New Class of Plasmonic Nanomaterials. Chemical Society reviews. 43. 10.1039/c3cs60417a. [47] Blaber, Martin & Arnold, Matthew & Ford, Michael. (2010). A review of the optical properties of alloys and intermetallics for plasmonics. Journal of physics. Condensed matter : an Institute of Physics journal. 22. 143201. 10.1088/0953-8984/22/14/143201. [48] Schleppi, Patrick & Paquette, Alain. (2017). Solar Radiation in Forests: Theory for Hemispherical Photography. 10.1007/978-94-024-1098-3_2. [49] Sze, S.M. (2007). Physics of Semiconductor Devices. Wiley. 27. 111-126. [50] Aspnes, D.E. & Studna, A. (1983). Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B. 27. 10.1103/PhysRevB.27.985. [51] Hagemann, H.-J & Gudat, W. & Kunz, C. (1974). Optical constants from the far Infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. Report of the Deutsches Elektronen-Synchrotron, DESY Sr-74/7. [52] Wu, Feifei & Shi, Gang & Xu, Hongbo & Liu, Lingxiao & Wang, Yandong & Qi, Dianpeng & Lu, Nan. (2013). Fabrication of Antireflective Compound Eyes by Imprinting. ACS applied materials & interfaces. 5. 10.1021/am404168d. [53] Diukman, Iddo & Orenstein, Meir. (2011). How front side plasmonic nanostructures enhance solar cell efficiency. Solar Energy Materials and Solar Cells. 95. 2628-2631. 10.1016/j.solmat.2011.05.019. [54] Malitson, I.H. (1965). Interspecimen Comparison of the Refractive Index of Fused Silica. JOSA. 55. 1205-1208. 10.1364/JOSA.55.001205. [55] Lee, Ya-Ju & Yao, Yung-Chi & Tsai, Meng-Tsan & Liu, An-Fan & Yang, Min-De & Lai, Jiun-Tsuen. (2013), Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. Optics express. 21 Suppl 6. A953-63. 10.1364/OE.21.00A953. [56] Rheinländer, Bernd & Schubert, Mathias & Gottschalch, V. (1995). Dark-field spectroscopy on spontaneously ordered GaInP2. Physica Status Solidi (a). 152. 287-292. 10.1002/pssa.2211520129. [57] Tavares, Jason & Swanson, Edward & Coulombe, Sylvain. (2008). Plasma Synthesis of Coated Metal Nanoparticles with Surface Properties Tailored for Dispersion. Plasma Processes and Polymers. 5. 759-769. 10.1002/ppap.200800074. [58] Pearce, Joshua & Podraza, Nikolas & Collins, R. & Al-Jassim, M. & Jones, Kimberly & Deng, Jiangmin & Wronski, C.R. (2007), Optimization of open circuit voltage in amorphous silicon solar cells with mixed-phase (amorphous+nanocrystalline) p-type contacts of low nanocrystalline content. Journal of Applied Physics. 101. 114301 - 114301. 10.1063/1.2714507.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/25483
dc.description.abstractFor environmental and economic sustainability it is very important to meet the increasing energy needs with clean and renewable resources. Improvements made in the efficiency and cost of solar cells will be crucial in the future role of this renewable energy source. To achieve this, the unique optical characteristics of plasmonic nanoparticles and their applications on solar cells are investigated. In this regard, a formulation is developed to examine the optical properties of plasmonic nanoparticles in the lossy medium of a solar cell. Using this method, the effects of different parameters and structures on nanoparticle characteristics are investigated. The effect of the characterized nanoparticles on the optical power absorption of the solar cell is calculated. In this way, the optimal use of nanoparticles in solar cells and their contribution to cell absorption are determined. With the addition of nanoparticles inside the cell, an absorption increase of up to several times is observed with increased effects in thinner solar cells. The absorption of a 200 nm thick silicon cell is increased by a factor of 6.8 when silver nanoparticles are incorporated. This increase is 2.48 times for a 1 µm thick silicon cell. The use of plasmonic nanoparticles in multi-junction solar cells is also evaluated. The efficiency of the cell is increased in a wide spectrum of light by jointly using nanoparticles with different properties. Thus, it is shown that the use of nanoparticles in solar cells can provide an increase in efficiency and decrease in material costs.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectYüzey plazmonlarıtr_TR
dc.subjectMetal nanopartiküllertr_TR
dc.subjectYarı iletken güneş pilitr_TR
dc.subjectKayıplı Ortamtr_TR
dc.subject.lcshElektrik-Elektronik mühendisliğitr_TR
dc.titlePlazmonik Nanoparçacıkların Güneş Hücrelerinin Verimine Etkileritr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetArtan enerji ihtiyaçlarının temiz ve yenilenebilir kaynaklar ile karşılanması çevresel ve ekonomik sürdürülebilirlik adına çok önemlidir. Yenilenebilir enerji kaynaklarından olan güneş hücrelerinin verim ve maliyetlerinde yapılacak iyileştirmeler bu kaynağın tercih edilmesinde önemli rol oynayacaktır. Bunu sağlamak adına plazmonik nanoparçacıkların özgün optik karakteristiklerinin ve güneş hücresi üzerine uygulamalarının araştırılması amaçlanmıştır. Bu kapsamda güneş hücresi içerisinde yer alan plazmonik nanoparçacıkların bu kayıplı ortam içerisindeki optik özelliklerini incelemek için bir formülasyon geliştirilmiştir. Bu yöntem kullanılarak değişik parametre ve yapıların nanoparçacık karakteristiklerine etkileri incelenmiştir. Karakteristikleri belirlenen nanoparçacıkların güneş hücresi tarafından emilen optik güce etkisi hesaplanmıştır. Bu yolla nanoparçacıkların güneş hücrelerinde optimal kullanımı ve hücre emiliminde sağladıkları artış değerlendirilmiştir. Nanoparçacıkların hücre içerisinde kullanımı ile birkaç kata kadar emilim artışı görülmüş ve ince güneş hücrelerinde daha etkili oldukları gözlemlenmiştir. 200 nm kalınlığındaki silisyum emilimi hücre içerisine eklenen gümüş nanoparçacıklar ile 6.8 katına çıkmıştır. Bu artış 1 µm kalınlığındaki silisyum hücrede ise 2.48 kattır. Plazmonik nanoparçacıkların çok eklemli güneş hücrelerinde kullanımı ele alınmıştır. Farklı özelliklere sahip nanoparçacıkların birlikte kullanılmasıyla geniş bir ışık spektrumunda verim artışı sağlanmıştır. Böylece nanoparçacıkların güneş hücrelerinde kullanımının verimde artış ve malzeme maliyetinden kazanç elde edilmesini sağlayabileceği gösterilmiştir.tr_TR
dc.contributor.departmentElektrik –Elektronik Mühendisliğitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2021-10-13T07:13:29Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster

info:eu-repo/semantics/openAccess
Aksi belirtilmediği sürece bu öğenin lisansı: info:eu-repo/semantics/openAccess