Basit öğe kaydını göster

dc.contributor.advisorToker, Cenk
dc.contributor.authorÇakılcı , Ali Yasin
dc.date.accessioned2020-09-17T10:34:38Z
dc.date.issued2020
dc.date.submitted2020-06-11
dc.identifier.citation[1] E.J. Candes, M.B. Wakin, An Introduction to Compressive Sampling, IEEE Signal Processing Magazine, 25 (2008) 21-30. [2] K. Yu, M. Yin, L.T. Wu, Z. Wang, Signal Model Based Compressed Sampling for Wireless Sensor Array Network, 2013 9th International Conference on Information, Communications and Signal Processing (ICICS), 10-13 Dec. 2013, Tainan, Taiwan, 2013 [3] Z. Fei, F. Lin, Q. Zhang, J. Chen, J. Wan, Improved Sparsest Random Scheduling for Compressive Data Gathering Under Unreliable Link in Wireless Sensor Networks, 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, 15-18 Dec. 2016, Chengdu, China, 2016, p. 205-210. [4] C. Karakuş, Sıkıştırılmış Algılamanın Kablosuz Algılayıcı Ağların Enerji Tüketimi Ve Yaşam Süresi Üzerindeki Etkinliğinin İncelenmesi, Yüksek Lisans Tezi, TOBB Ekonomi ve Teknoloji Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2013. [5] E.J. Candes, T. Tao, Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies, IEEE Transactions on Information Theory, 52 (2006) 5406-5425. [6] D.L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006) 1289-1306. [7] T. Wimalajeewa, P.K.. Varshney, Compressive Sensing Based Signal processing in Wireless Sensor Networks: A survey, https://arxiv.org/abs/1709.10401v1 (Erişim tarihi: 1 Mayıs 2020). [8] Y. Zhou, A. Ortega, D.L. Wang, S. Lee, Node Clustering for Data Collection in Wireless Sensor Networks Using Graph-transform and Compressive Sampling, 2014 12th International Conference on Signal Processing (ICSP), IEEE, 19-23 October 2014, Hangzhou, China, 2014, p. 2251-2256. [9] S.A. Padalkar, U. Pacharaney, Energy Efficient Data Gathering in Wireless Sensor Networks and Internet of Things with Compressive Sensing at Sensor Node, 2016 International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), IEEE, 2016, p. 551-554. [10] C. Liu, K. Wu, J. Pei, An Energy-Efficient Data Collection Framework for Wireless Sensor Networks by Exploiting Spatiotemporal Correlation, IEEE Transactions on Parallel and Distributed Systems, 18 (2007) 1010-1023. [11] J. Xiong, Q.J.J.o.S. Tang, 1-bit Compressive Data Gathering for Wireless Sensor Networks, Journal of Sensors 2014 (2014). [12] D.Y. Cao, K. Yu, S.G. Zhuo, Y.H. Hu, Z. Wang, On the Implementation of Compressive Sensing on Wireless Sensor Network, 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), 4-8 April 2016, Berlin, Germany, 2016, p. 229-234. [13] H.F. Zheng, J.Y. Li, X.X. Feng, W.Z. Guo, Z.H. Chen, N. Xiong, Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks, Sensors, 17 (2017). [14] W. Chen, I.J. Wassell, Energy Efficient Signal Acquisition via Compressive Sensing in Wireless Sensor Networks, International Symposium on Wireless and Pervasive Computing, IEEE, 23-25 February 2011, Hong Kong, China, 2011, p. 1-6. [15] E. Ghalebi, H. Mahyar, R. Grosu, H.R. Rabiee, Compressive Sampling for Sparse Recovery in Networks, Proc of the 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 13th International Workshop on Mining and Learning with Graphs, 14 August 2017, Halifax, Nova Scotia, Canada, 2017, p. 1-8. [16] J. Oliveira, J. Goes, Parametric Analog Signal Amplification Applied to Nanoscale CMOS Technologies, Springer Science & Business Media, 2012. [17] M. Bokare, A. Ralegaonkar, Wireless Sensor Network: A Promising Approach for Distributed Sensing Tasks, International Journal of Computer Engineering Science (IJCES), 2 (2012) 55-61. [18] R. Sudha, B. Shamile, A Survey on Wireless Sensor Networks, International Journal of Engineering Sciences & Research, (2017) 66-71. [19] J. Valverde, V. Rosello, G. Mujica, J. Portilla, A. Uriarte, T. Riesgo, Wireless Sensor Network for Environmental Monitoring: Application in a Coffee Factory, International Journal of Distributed Sensor Networks, 8 (2012). [20] J. Ko, C.Y. Lu, M.B. Srivastava, J.A. Stankovic, A. Terzis, M. Welsh, Wireless Sensor Networks for Healthcare, Proceedings of the IEEE , 98 (2010) 1947-1960. [21] J. Arias, J. Lazaro, A. Astarloa, J. Jimenez, A. Zuloaga, Location Algorithm for Wireless Sensor Networks in Industrial Applications, 2004 IEEE International Conference on Industrial Technology, 8-10 Dec. 2004, Hammamet, Tunisia, 2004, p.757-762. [22] C. Jacquemod, B. Nicolle, G. Jacquemod, WSN for Smart Building Application, 10th European Workshop on Microelectronics Education (EWME), IEEE, 14-16 May 2014, Tallinn, Estonia, 2014, p. 102-105. [23] H.M. Jawad, R. Nordin, S.K. Gharghan, A.M. Jawad, M. Ismail, Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review, Sensors, 17 (2017). [24] X. Zhong, E.J. Coyle, eStadium: A wireless" Living Lab" for Safety and Infotainment Applications, 2006 First International Conference on Communications and Networking in China, IEEE, 25-27 October 2006, Beijing, China, 2006, p. 1-6. [25] M. Franceschinis, L. Gioanola, M. Messere, R. Tomasi, M.A. Spirito, P. Civera, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference, 26-29 April 2009, Barcelona, Spain, 2009 [26] Anonim, Future Trends In Wireless Sensor Networks Information Technology 2018, https://www.ukessays.com/essays/information-technology/future-trends-in-wireless-sensor-networks-information-technology-essay.php (Erişim Tarihi: 1 Mayıs 2020) [27] D. Estrin, Wireless sensor networks: Application Driver for Low Power Distributed Systems, Proceedings of the 2001 International Symposium on Low Power Electronics and Design, 6-7 Aug. 2001, Huntington Beach, CA, USA, 2001, p. 194-194. [28] A. Chehri, P. Fortier, P.M. Tardif, Security Monitoring Using Wireless Sensor Networks, Fifth Annual Conference on Communication Networks and Services Research (CNSR 07), IEEE, 14-17 May 2007, Frederlcton, NB, Canada, (2007) p. 13-17 [29] S. Sharma, D. Kumar, K.J.I.J.o.C.S. Kishore, Engineering, Wireless Sensor Networks-A Review on Topologies and Node Architecture, International Journal of Computer Sciences and Engineering, 1 (2013) 19-25. [30] J. Cheng, Q. Ye, H.B. Jiang, D. Wang, C.G. Wang, STCDG: An Efficient Data Gathering Algorithm Based on Matrix Completion for Wireless Sensor Networks, IEEE Transactions on Wireless Communications, 12 (2013) 850-861. [31] G. Campobello, A. Segreto, S. Serrano, Data Gathering Techniques for Wireless Sensor Networks: A Comparison, International Journal of Distributed Sensor Networks, 12 (2016). [32] C. Luo, F. Wu, J. Sun, C.W. Chen, Compressive Data Gathering for Large-Scale Wireless Sensor Networks, Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, 20-25 September 2009, Beijing, China, (2009), p. 145-156. [33] L. Xiang, J. Luo, A. Vasilakos, Compressed Data Aggregation for Energy Efficient Wireless Sensor Networks, 2011 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, 27-30 June 2011, Salt Lake City, UT, USA, 2011, pp. 46-54. [34] J. Luo, L. Xiang, C. Rosenberg, Does Compressed Sensing Improve the Throughput of Wireless Sensor Networks?, 2010 IEEE International Conference on Communications, 23-27 May 2010, Cape Town, South Africa, (2010), p. 1-6. [35] Z.Y. Chen, G. Yang, L. Chen, J. Xu, Constructing Maximum-Lifetime Data-Gathering Tree in WSNs Based on Compressed Sensing, International Journal of Distributed Sensor Networks, 12 (2016) 1-6. [36] X.O. Wu, Y. Xiong, P.L. Yang, S.H. Wan, W.C. Huang, Sparsest Random Scheduling for Compressive Data Gathering in Wireless Sensor Networks, IEEE Transactions on Wireless Communications, 13 (2014) 5867-5877. [37] S. Padalkar, A. Korlekar, U. Pacharaney, Data Gathering in Wireless Sensor Network for Energy Efficiency with and without Compressive Sensing at Sensor Node, 2016 International Conference on Communication and Signal Processing (ICCSP), IEEE, 6-8 April 2016, Melmaruvathur, India, 2016, p. 1356-1359. [38] S.C. Li, L.D. Xu, X.H. Wang, Compressed Sensing Signal and Data Acquisition in Wireless Sensor Networks and Internet of Things, IEEE Transactions on Industrial Informatics, 9 (2013) 2177-2186. [39] H.F. Zheng, F. Yang, X.H. Tian, X.Y. Gan, X.B. Wang, S.L. Xiao, Data Gathering with Compressive Sensing in Wireless Sensor Networks: A Random Walk Based Approach, IEEE Transactions on Parallel and Distributed Systems , 26 (2015) 35-44. [40] B. Sun, C.H. Ma, X.Y. Jin, Z.X. Ma, Data Aggregation Scheme Based on Compressive Sensing in Wireless Sensor Network, 2016 9th International Symposium on Computational Intelligence and Design (ISCID), 10-11 December 2016, Hangzhou, China, 2016, p. 453-456. [41] M.T. Nguyen, K.A. Teague, Compressive Sensing Based Random Walk Routing in Wireless Sensor Networks, Ad Hoc Networks, 54 (2017) 99-110. [42] R.T. Xie, X.H. Jia, Transmission-Efficient Clustering Method for Wireless Sensor Networks Using Compressive Sensing, IEEE Transactions on Parallel and Distributed Systems, 25 (2014) 806-815. [43] P. Sun, L.T. Wu, Z.B. Wang, M. Xiao, Z. Wang, Sparsest Random Sampling for Cluster-Based Compressive Data Gathering in Wireless Sensor Networks, IEEE Access, 6 (2018) 36383-36394. [44] J. Chen, J. Jia, Y.S. Deng, X.W. Wang, A.H. Aghvami, Adaptive Compressive Sensing and Data Recovery for Periodical Monitoring Wireless Sensor Networks, Sensors, 18 (2018). [45] A. Fragkiadakis, P. Charalampidis, E. Tragos, Adaptive Compressive Sensing for Energy Efficient Smart Objects in IoT applications, 2014 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems (VITAE), IEEE, 11-14 May 2014, Aalborg, Denmark, 2014, pp. 1-5. [46] M. Rani, S.B. Dhok, R.B. Deshmukh, A Systematic Review of Compressive Sensing: Concepts, Implementations and Applications, IEEE Access, 6 (2018) 4875-4894. [47] R. G. Baraniuk, Compressive Sensing [lecture notes], IEEE Signal Processing Magazine, 24 (2007) 118-121. [48] S. Hwang, J. Park, D. Kim, J. Yang, SNR Efficient Transmission for Compressive Sensing Based Wireless Sensor Networks, 6th Joint IFIP Wireless and Mobile Networking Conference (WMNC), 23-25 April 2013, Dubai, United Arab Emirates, 2013, p. 1-6. [49] A.L. Pilastri, J.M.R. Tavares, Reconstruction Algorithms in Compressive Sensing: An Overview, 11th edition of the Doctoral Symposium in Informatics Engineering (DSIE-16), February 2016, Porto, Portugal, 2016. [50] T.T. Do, L. Gan, N. Nguyen, T.D. Tran, Sparsity Adaptive Matching Pursuit Algorithm for Practical Compressed Sensing 2008 42nd Asilomar Conference on Signals, Systems and Computers, IEEE, 26-29 October 2008, Pacific Grove, USA, 2008, p. 581-587. [51] L. Stanković, E. Sejdić, S. Stanković, M. Daković, I. Orović, A Tutorial on Sparse Signal Reconstruction and Its Applications in Signal Processing, Circuits, Systems, and Signal Processing, 38 (2019) 1206-1263. [52] D. Needell, J.A. Tropp, CoSaMP: Iterative Signal Recovery from Incomplete and Inaccurate Samples, Applied and Computational Harmonic Analysis, 26 (2009) 301-321. [53] Z.M. Zhang, S.S. Wei, D.W. Wei, L.P. Li, F. Liu, C.Y. Liu, Comparison of Four Recovery Algorithms used in Compressed Sensing for ECG Signal Processing, 2016 Computing in Cardiology Conference (CinC), IEEE, 11-14 September 2016, Vancouver, Canada, 2016, p. 401-404. [54] Y. Gaur, V.K. Chakka, Performance Comparison of OMP and CoSaMP Based Channel Estimation in AF-TWRN Scenario, 2012 Third International Conference on Computer and Communication Technology (ICCCT), IEEE, 23-25 November 2012, Allahabad, India, 2012, p. 186-190. [55] Y. Wang, Z. Yang, J. Zhang, F. Li, H. Wen,Y. Shen, CS^2-Collector: A New Approach for Data Collection in Wireless Sensor Networks Based on Two-Dimensional Compressive Sensing, Sensors, 16 (2016) 1318-1334. [56] S. Joshi, K. V. Siddamal, V.S. Saroja, Performance Analysis of Compressive Sensing Reconstruction, 2015 2nd International Conference on Electronics and Communication Systems (ICECS), IEEE, 26-27 February 2015, Coimbatore, India, 2015, p. 724-729tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/22716
dc.description.abstractCommunication is emerging as one of the most important topics of today. Data traffic has been increasing incredibly day by day. Wireless communications is convenient to use and has been widely used in daily life with an increasing penetration. Wireless Sensor Networks use sensors to sense the environment and use wireless communications to send and receive the related information. WSN consists of sensor nodes which has limited battery power and a base station to gather the observation data and process it. It is necessary to use energy efficiently in order to increase the lifetime of the network. Furthermore, the energy consumed by the network is directly related to data communication and data processing. Compressive Sampling theory has a solution at this point. If the signal is sparse in a certain transform domain, Compressive Sampling theory states that less number of measurements can be used to reconstruct the function representing the physical parameter of concern. Because of this, CS has become an important technology for WSNs. In this study, the sensor nodes in a WSN are assumed to be distributed over a geographical region using the Gauss distribution, uniform distribution, grid distribution and H-PPP distribution, and the reconstruction performance of the OMP and CoSamp algorithms are assessed over measurements taken from sampling points.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectKablosuz sensör ağlarıtr_TR
dc.subjectSıkıştırılmış algılamatr_TR
dc.subjectSıkıştırıcı veri toplamatr_TR
dc.subject.lcshElektrik-elektronik mühendisliğitr_TR
dc.titleKablosuz Sensör Ağlarında Sıkıştırılmış Örneklemetr_TR
dc.title.alternativeCompressıve Samplıng In Wıreless Sensor Networks
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetHaberleşme günümüzün en önemli konularından biri olarak öne çıkmaktadır. Günden güne veri trafiği inanılmaz bir şekilde artış göstermektedir. Pratik açıdan kullanım kolaylığı ile birlikte kablosuz haberleşme teknolojisi bu zamana kadar önemli gelişmeler kat etmiştir. WSN’ler kablosuz haberleşmeyi kullanan, çeşitli fiziksel ölçümleri yapıp belli bir bölgeyi gözetlemeyi veya o bölgeden bilgi toplama imkânı veren ağlardır. Bu ağ kısıtlı enerjiye sahip düğümlerden ve bu düğümlerin verilerinin toplandığı ve işlendiği en az bir erişim noktasından oluşmaktadır. WSN’lerdeki düğümlerin yaşam sürelerini uzatmak için enerjilerinin verimli bir şekilde kullanılması gerekmektedir. Harcanan enerji, veri iletimi ve hesaplamalar ile doğrudan ilişkilidir. CS teorisi de bu noktada çözüm sunmaktadır; eğer ölçülen sinyal seyrekse, bu sinyal Nyquist oranına göre daha az sayıda ölçümle yeniden oluşturabilmektedir. Bundan dolayı CS, WSN için önemli bir tekniktir. Bu tez çalışmasında incelenen sinüzoidal, doğrusal ve ikinci derece alanlar için örnekleme noktaları tekdüze, Gauss, H-PPP ve eş aralıklı olarak seçilmiştir. Bu örnekleme noktalarından alınan ölçümler OMP ve CoSamp algoritmaları kullanılarak geri dönüşüm başarımları incelenmiştir. Düğümlerin alana rasgele dağıtılmasını öneren, bir başka deyişle örnekleme noktalarının rasgele seçildiği, tekdüze ve H-PPP dağılımları daha başarılı sonuçlar vermiştir.tr_TR
dc.contributor.departmentElektrik –Elektronik Mühendisliğitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2020-09-17T10:34:38Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster