Basit öğe kaydını göster

dc.contributor.advisorBodur, Ebru
dc.contributor.authorÇiğdem, Çiçek
dc.date.accessioned2020-03-23T11:40:40Z
dc.date.issued2020
dc.date.submitted2020-03-05
dc.identifier.citation1. Mitchell JJ, Trakadis YJ, Scriver CR. Phenylalanine hydroxylase deficiency. Genetics in medicine. 2011;13(8):697. 2. Blau N, van Spronsen FJ, Levy HL. Phenylketonuria. The Lancet. 2010;376(9750):1417-27. 3. Van Wegberg A, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch A, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet journal of rare diseases. 2017;12(1):162. 4. Lever C, Wills T, Cacucci F, Burgess N, O'Keefe J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature. 2002;416(6876):90. 5. Ådén U, Herlenius E, Tang L-Q, Fredholm BB. Maternal caffeine intake has minor effects on adenosine receptor ontogeny in the rat brain. Pediatric research. 2000;48(2):177. 6. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annual review of neuroscience. 2001;24(1):677-736. 7. Brigadski T, Leßmann V. BDNF: a regulator of learning and memory processes with clinical potential. e-Neuroforum. 2014;20(1):1-11. 8. Panja D, Bramham CR. BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology. 2014;76:664-76. 9. Bekinschtein P, Cammarota M, Medina JH. BDNF and memory processing. Neuropharmacology. 2014;76:677-83. 10. Sumaily KM, Mujamammi AH. Phenylketonuria: A new look at an old topic, advances in laboratory diagnosis, and therapeutic strategies. International journal of health sciences. 2017;11(5):63. 11. SK D. Inborn errors of metabolism: Challenges and management. Indian J Clin Biochem. 2013;23(311):3. 12. Kaufman S. The phenylalanine hydroxylating system from mammalian liver. Advances in Enzymology and Related Areas of Molecular Biology, Volume 35. 1971:245-319. 13. Fitzpatrick PF. Tetrahydropterin-dependent amino acid hydroxylases. Annual review of biochemistry. 1999;68(1):355-81. 14. Bjørgo E, de Carvalho RMN, Flatmark T. A comparison of kinetic and regulatory properties of the tetrameric and dimeric forms of wild‐type and Thr427→ Pro mutant human phenylalanine hydroxylase. The FEBS Journal. 2001;268(4):997-1005. 15. Erlandsen H, Patch MG, Gamez A, Straub M, Stevens RC. Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria. Pediatrics. 2003;112(Supplement 4):1557-65. 16. Fusetti F, Erlandsen H, Flatmark T, Stevens RC. Structure of tetrameric human phenylalanine hydroxylase and its implications for phenylketonuria. Journal of Biological Chemistry. 1998;273(27):16962-7. 17. Bickel H. Influence of phenylalanine intake on pheny-lketonuria. Lancet ii. 1953;812. 18. KENNEDY JL, WERTELECKI W, GATES L, SPERRY BP, CASS VM. The early treatment of phenylketonuria. American Journal of Diseases of Children. 1967;113(1):16-21. 19. Seashore MR, Wappner R, Cho S, de la Cruz F, Kronmal RA, Schuett V. Management of phenylketonuria for optimal outcome: a review of guidelines for phenylketonuria management and a report of surveys of parents, patients, and clinic directors. Pediatrics. 1999;104(6):e68-e. 20. Walter J, White F, Hall S, MacDonald A, Rylance G, Boneh A, et al. How practical are recommendations for dietary control in phenylketonuria? The Lancet. 2002;360(9326):55-7. 21. Trefz F, Maillot F, Motzfeldt K, Schwarz M. Adult phenylketonuria outcome and management. Molecular genetics and metabolism. 2011;104:S26-S30. 22. Smith I, Cockburn F, Barwell B, Brenton D, Chapple J, Clark B, et al. Recommendations on the dietary management of phenylketonuria. Arch Dis Child. 1993;68(3):426-7. 23. dos Santos LL, de Castro Magalhães M, Januário JN, de Aguiar MJB, Carvalho MRS. The time has come: a new scene for PKU treatment. Genet Mol Res. 2006;5(1):33-44. 24. Brumm V, Azen C, Moats R, Stern A, Broomand C, Nelson M, et al. Neuropsychological outcome of subjects participating in the PKU adult collaborative study: a preliminary review. Journal of inherited metabolic disease. 2004;27(5):549-66. 25. Channon S, German E, Cassina C, Lee P. Executive functioning, memory, and learning in phenylketonuria. Neuropsychology. 2004;18(4):613. 26. Diamond A, Prevor MB, Callender G, Druin DP. Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the society for research in child development. 1997:i-206. 27. De Groot M, Hoeksma M, Blau N, Reijngoud D, Van Spronsen F. Pathogenesis of cognitive dysfunction in phenylketonuria: review of hypotheses. Molecular Genetics and Metabolism. 2010;99:S86-S9. 28. Hanley WB. Adult phenylketonuria. The American journal of medicine. 2004;117(8):590-5. 29. Khemir S, El Asmi M, Sanhaji H, Feki M, Jemaa R, Tebib N, et al. Phenylketonuria is still a major cause of mental retardation in Tunisia despite the possibility of treatment. Clin Neurol Neurosurg. 2011;113(9):727-30. 30. Scriver C. Hyperphenylalaninemia: phenylalanine hydroxylase deficiency. The metabolic and molecular bases of inherited diseases. 2001:1667-724. 31. Ahring K, Bélanger-Quintana A, Dokoupil K, Ozel HG, Lammardo AM, MacDonald A, et al. Dietary management practices in phenylketonuria across European centres. Clinical nutrition. 2009;28(3):231-6. 32. El-Metwally A, Yousef Al-Ahaidib L, Ayman Sunqurah A, Al-Surimi K, Househ M, Alshehri A, et al. The Prevalence of Phenylketonuria in Arab Countries, Turkey, and Iran: A Systematic Review. BioMed research international. 2018;2018. 33. Targum SD, Lang W. Neurobehavioral problems associated with phenylketonuria. Psychiatry (Edgmont). 2010;7(12):29-32. 34. Cleary MA. Phenylketonuria. Paediatrics and Child Health. 2015;25(3):108-12. 35. Koch J. Robert Guthrie--The PKU Story: Crusade Against Mental Retardation: Hope Publishing House; 1997. 36. i Ö. VIII. Uluslararası Katılımlı Beslenme ve Metabolik Hastalıklar Kongre Kitabı. 2005. p. 146. 37. Paine RS. The variability in manifestations of untreated patients with phenylketonuria (phenylpyruvic aciduria). Pediatrics. 1957;20(2):290-302. 38. Hendriksz C, Walter J. Update on phenylketonuria. Current Paediatrics. 2004;14(5):400-6. 39. Surtees R, Blau N. The neurochemistry of phenylketonuria. Eur J Pediatr. 2000;159 Suppl 2:S109-S13. 40. Palermo L, Geberhiwot T, MacDonald A, Limback E, Hall SK, Romani C. Cognitive outcomes in early-treated adults with phenylketonuria (PKU): A comprehensive picture across domains. Neuropsychology. 2017;31(3):255. 41. Koch R, Burton B, Hoganson G, Peterson R, Rhead W, Rouse B, et al. Phenylketonuria in adulthood: a collaborative study. Journal of inherited metabolic disease. 2002;25(5):333-46. 42. Christ SE, Huijbregts SC, de Sonneville LM, White DA. Executive function in early-treated phenylketonuria: profile and underlying mechanisms. Molecular Genetics and Metabolism. 2010;99:S22-S32. 43. Williamson ML, Koch R, Azen C, Chang C. Correlates of intelligence test results in treated phenylketonuric children. Pediatrics. 1981;68(2):161-7. 44. Kaufman S. An evaluation of the possible neurotoxicity of metabolites of phenylalanine. The Journal of pediatrics. 1989;114(5):895-900. 45. Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genetics in Medicine. 2014;16(2):188. 46. Lichter-Konecki U, Vockley J. Phenylketonuria: Current treatments and future developments. Drugs. 2019;79(5):495-500. 47. Acosta P, Yannicelli S. The Ross metabolic formula system nutrition support protocols. Ross Products Division, Division of Abbott Laboratories. 2001. 48. MacLeod EL, Gleason ST, van Calcar SC, Ney DM. Reassessment of phenylalanine tolerance in adults with phenylketonuria is needed as body mass changes. Molecular genetics and metabolism. 2009;98(4):331-7. 49. Walter JΗ, White FJ. Blood phenylalanine control in adolescents with phenylketonuria. De Gruyter; 2004. 50. Pietz J, Kreis R, Rupp A, Mayatepek E, Boesch C, Bremer HJ. Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. The Journal of clinical investigation. 1999;103(8):1169-78. 51. Bartholomé K, Byrd DJ, Kaufman S, Milstien S. Atypical phenylketonuria with normal phenylalanine hydroxylase and dihydropteridine reductase activity in vitro. Pediatrics. 1977;59(5):757-61. 52. Schaub J, Däumling S, Curtius H-C, Niederwieser A, Bartholome K, Viscontini M, et al. Tetrahydrobiopterin therapy of atypical phenylketonuria due to defective dihydrobiopterin biosynthesis. Archives of disease in childhood. 1978;53(8):674-6. 53. KuvanTM (Sapropterin Dihydrochloride) prescribing information. BioMarin Pharmaceutical Inc,Novato. 2013. (v5/2015, revised: 07/2015). 54. Trefz FK, Burton BK, Longo N, Casanova MM-P, Gruskin DJ, Dorenbaum A, et al. Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. The Journal of pediatrics. 2009;154(5):700-7. e1. 55. Hoskins J, Jack G, Peiris RD, Starr DT, Wade H, Wright E, et al. Enzymatic control of phenylalanine intake in phenylketonuria. The Lancet. 1980;315(8165):392-4. 56. Sarkissian CN, Shao Z, Blain F, Peevers R, Su H, Heft R, et al. A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proceedings of the National Academy of Sciences. 1999;96(5):2339-44. 57. Sarkissian CN, Gámez A. Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Molecular genetics and metabolism. 2005;86:22-6. 58. Zori R, Thomas JA, Shur N, Rizzo WB, Decker C, Rosen O, et al. Induction, titration, and maintenance dosing regimen in a phase 2 study of pegvaliase for control of blood phenylalanine in adults with phenylketonuria. Molecular genetics and metabolism. 2018;125(3):217-27. 59. Thomas J, Levy H, Amato S, Vockley J, Zori R, Dimmock D, et al. Pegvaliase for the treatment of phenylketonuria: results of a long-term phase 3 clinical trial program (PRISM). Molecular genetics and metabolism. 2018;124(1):27-38. 60. Longo N, Zori R, Wasserstein MP, Vockley J, Burton BK, Decker C, et al. Long-term safety and efficacy of pegvaliase for the treatment of phenylketonuria in adults: combined phase 2 outcomes through PAL-003 extension study. Orphanet journal of rare diseases. 2018;13(1):108. 61. Bothwell M. Recent advances in understanding neurotrophin signaling. F1000Research. 2016;5. 62. Vilar M, Mira H. Regulation of Neurogenesis by Neurotrophins during Adulthood: Expected and Unexpected Roles. Frontiers in neuroscience. 2016;10:26. 63. Ledda F, Paratcha G. Assembly of neuronal connectivity by neurotrophic factors and leucine-rich repeat proteins. Frontiers in cellular neuroscience. 2016;10:199. 64. Bothwell M. Recent advances in understanding neurotrophin signaling. F1000Research. 2016;5. 65. Bothwell M. NGF, BDNF, NT3, and NT4. Handbook of experimental pharmacology. 2014;220:3-15. 66. Ibanez CF, Andressoo JO. Biology of GDNF and its receptors - Relevance for disorders of the central nervous system. Neurobiology of disease. 2017;97(Pt B):80-9. 67. Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R. Neurotrophic cross‐talk between the nervous and immune systems: implications for neurological diseases. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2003;53(3):292-304. 68. Lindahl M, Saarma M, Lindholm P. Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential. Neurobiology of disease. 2017;97:90-102. 69. Levi-Montalcini R, Angeletti PU. Essential role of the nerve growth factor in the survival and maintenance of dissociated sensory and sympathetic embryonic nerve cells in vitro. Developmental biology. 1963;7:653-9. 70. Bothwell M. Ngf, bdnf, nt3, and nt4. Neurotrophic factors: Springer; 2014. p. 3-15. 71. Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME. CREB: a major mediator of neuronal neurotrophin responses. Neuron. 1997;19(5):1031-47. 72. Chen B, Dowlatshahi D, MacQueen GM, Wang J-F, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biological psychiatry. 2001;50(4):260-5. 73. Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry J-M, Bertschy G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biological psychiatry. 2005;57(9):1068-72. 74. Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorders. Brain research reviews. 2004;45(2):104-14. 75. Malberg JE, Blendy JA. Antidepressant action: to the nucleus and beyond. Trends in Pharmacological Sciences. 2005;26(12):631-8. 76. Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends in neurosciences. 2004;27(10):589-94. 77. Numakawa T, Suzuki S, Kumamaru E, Adachi N, Richards M, Kunugi H. BDNF function and intracellular signaling in neurons. Histology and histopathology. 2010;25(2):237-58. 78. Yamada K, Mizuno M, Nabeshima T. Role for brain-derived neurotrophic factor in learning and memory. Life sciences. 2002;70(7):735-44. 79. Gorski J, Balogh S, Wehner J, Jones K. Learning deficits in forebrain-restricted brain-derived neurotrophic factor mutant mice. Neuroscience. 2003;121(2):341-54. 80. Huang EJ, Reichardt LF. Trk receptors: roles in neuronal signal transduction. Annual review of biochemistry. 2003;72(1):609-42. 81. Reichardt LF. Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society B: Biological Sciences. 2006;361(1473):1545-64. 82. Takei N, Kawamura M, Hara K, Yonezawa K, Nawa H. Brain-derived Neurotrophic Factor Enhances Neuronal Translation by Activating Multiple Initiation Processes COMPARISON WITH THE EFFECTS OF INSULIN. Journal of Biological Chemistry. 2001;276(46):42818-25. 83. Horwood JM, Dufour F, Laroche S, Davis S. Signalling mechanisms mediated by the phosphoinositide 3‐kinase/Akt cascade in synaptic plasticity and memory in the rat. European Journal of Neuroscience. 2006;23(12):3375-84. 84. Chiang H-C, Wang L, Xie Z, Yau A, Zhong Y. PI3 kinase signaling is involved in Aβ-induced memory loss in Drosophila. Proceedings of the National Academy of Sciences. 2010;107(15):7060-5. 85. Mizuno M, Yamada K, Takei N, Tran M, He J, Nakajima A, et al. Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation. Molecular psychiatry. 2003;8(2):217. 86. Ortega-Martinez S. A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis. Front Mol Neurosci. 2015;8:46. 87. Cirulli F, Berry A, Chiarotti F, Alleva E. Intrahippocampal administration of BDNF in adult rats affects short‐term behavioral plasticity in the Morris water maze and performance in the elevated plus‐maze. Hippocampus. 2004;14(7):802-7. 88. Mu J-S, Li W-P, Yao Z-B, Zhou X-F. Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain research. 1999;835(2):259-65. 89. Horch HW, Krüttgen A, Portbury SD, Katz LC. Destabilization of cortical dendrites and spines by BDNF. Neuron. 1999;23(2):353-64. 90. Holsinger RD, Schnarr J, Henry P, Castelo VT, Fahnestock M. Quantitation of BDNF mRNA in human parietal cortex by competitive reverse transcription-polymerase chain reaction: decreased levels in Alzheimer's disease. Molecular Brain Research. 2000;76(2):347-54. 91. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain research reviews. 2008;59(1):201-20. 92. Pan W, Banks WA, Fasold MB, Bluth J, Kastin AJ. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology. 1998;37(12):1553-61. 93. Krabbe K, Nielsen A, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007;50(2):431-8. 94. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain‐derived neurotrophic factor from the brain during exercise. Experimental physiology. 2009;94(10):1062-9. 95. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? Journal of Experimental Medicine. 1999;189(5):865-70. 96. Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Molecular psychiatry. 2011;16(9):960-72. 97. Laske C, Stellos K, Hoffmann N, Stransky E, Straten G, Eschweiler GW, et al. Higher BDNF serum levels predict slower cognitive decline in Alzheimer's disease patients. International Journal of Neuropsychopharmacology. 2011;14(3):399-404. 98. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257-69. 99. Lima Giacobbo B, Doorduin J, Klein HC, Dierckx RAJO, Bromberg E, de Vries EFJ. Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. Molecular neurobiology. 2019;56(5):3295-312. 100. Raznahan A, Lee Y, Stidd R, Long R, Greenstein D, Clasen L, et al. Longitudinally mapping the influence of sex and androgen signaling on the dynamics of human cortical maturation in adolescence. Proceedings of the National Academy of Sciences. 2010;107(39):16988-93. 101. Ruigrok AN, Salimi-Khorshidi G, Lai M-C, Baron-Cohen S, Lombardo MV, Tait RJ, et al. A meta-analysis of sex differences in human brain structure. Neuroscience & Biobehavioral Reviews. 2014;39:34-50. 102. Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Frontiers in neuroendocrinology. 2016;40:67-86. 103. Cahill L. Why sex matters for neuroscience. Nature reviews neuroscience. 2006;7(6):477. 104. Li F, Zhang J-W, Wei R, Luo X-G, Zhang J-Y, Zhou X-F, et al. Sex-differential modulation of visceral pain by brain derived neurotrophic factor (BDNF) in rats. Neuroscience letters. 2010;478(3):184-7. 105. Sohrabji F, Miranda R, Toran-Allerand CD. Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences. 1995;92(24):11110-4. 106. Singh M, Meyer EM, Simpkins JW. The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology. 1995;136(5):2320-4. 107. Berchtold NC, Kesslak JP, Pike CJ, Adlard PA, Cotman CW. Estrogen and exercise interact to regulate brain‐derived neurotrophic factor mRNA and protein expression in the hippocampus. European Journal of Neuroscience. 2001;14(12):1992-2002. 108. Kiss Á, Delattre AM, Pereira SI, Carolino RG, Szawka RE, Anselmo-Franci JA, et al. 17β-estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory-and depression-related brain areas. Behavioural brain research. 2012;227(1):100-8. 109. Scharfman HE, Mercurio TC, Goodman JH, Wilson MA, MacLusky NJ. Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor. Journal of Neuroscience. 2003;23(37):11641-52. 110. Solum DT, Handa RJ. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. Journal of Neuroscience. 2002;22(7):2650-9. 111. Fusani L, Metzdorf R, Hutchison JB, Gahr M. Aromatase inhibition affects testosterone‐induced masculinization of song and the neural song system in female canaries. Journal of neurobiology. 2003;54(2):370-9. 112. Yang CF, Shah NM. Representing sex in the brain, one module at a time. Neuron. 2014;82(2):261-78. 113. Venezia AC, Guth LM, Sapp RM, Spangenburg EE, Roth SM. Sex-dependent and independent effects of long-term voluntary wheel running on Bdnf mRNA and protein expression. Physiology & behavior. 2016;156:8-15. 114. Munro CA. Sex differences in Alzheimer's disease risk: are we looking at the wrong hormones? International psychogeriatrics. 2014;26(10):1579-84. 115. Borrow AP, Cameron NM. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2014;54:13-25. 116. Sohrabji F, Lewis DK. Estrogen–BDNF interactions: implications for neurodegenerative diseases. Frontiers in neuroendocrinology. 2006;27(4):404-14. 117. Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of Alzheimer’s disease: assessing sex and gender differences. Clinical epidemiology. 2014;6:37. 118. Kandel ER. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Molecular brain. 2012;5(1):14. 119. Jahan S, Singh S, Srivastava A, Kumar V, Kumar D, Pandey A, et al. PKA-GSK3β and β-catenin signaling play a critical role in trans-resveratrol mediated neuronal differentiation in human cord blood stem cells. Molecular neurobiology. 2018;55(4):2828-39. 120. Barco A, Bailey CH, Kandel ER. Common molecular mechanisms in explicit and implicit memory. Journal of neurochemistry. 2006;97(6):1520-33. 121. Grimes MT, Harley CW, Darby-King A, McLean JH. PKA increases in the olfactory bulb act as unconditioned stimuli and provide evidence for parallel memory systems: pairing odor with increased PKA creates intermediate-and long-term, but not short-term, memories. Learning & memory. 2012;19(3):107-15. 122. Jiang H, Zhang X, Wang Y, Zhang H, Li J, Yang X, et al. Mechanisms underlying the antidepressant response of acupuncture via PKA/CREB signaling pathway. Neural plasticity. 2017;2017. 123. Zhong Y, Zhu Y, He T, Li W, Yan H, Miao Y. Rolipram-induced improvement of cognitive function correlates with changes in hippocampal CREB phosphorylation, BDNF and Arc protein levels. Neuroscience letters. 2016;610:171-6. 124. Nakagawa S, Kim J-E, Lee R, Chen J, Fujioka T, Malberg J, et al. Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. Journal of Neuroscience. 2002;22(22):9868-76. 125. Fujioka T, Fujioka A, Duman RS. Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. Journal of Neuroscience. 2004;24(2):319-28. 126. Ao H, Ko SW, Zhuo M. CREB activity maintains the survival of cingulate cortical pyramidal neurons in the adult mouse brain. Molecular pain. 2006;2(1):15. 127. Brightwell JJ, Smith CA, Neve RL, Colombo PJ. Long-term memory for place learning is facilitated by expression of cAMP response element-binding protein in the dorsal hippocampus. Learning & memory. 2007;14(3):195-9. 128. Rosenegger D, Parvez K, Lukowiak K. Enhancing memory formation by altering protein phosphorylation balance. Neurobiology of learning and memory. 2008;90(3):544-52. 129. Benito E, Barco A. CREB's control of intrinsic and synaptic plasticity: implications for CREB-dependent memory models. Trends in neurosciences. 2010;33(5):230-40. 130. Wang C, Guo J, Guo R. Effect of XingPiJieYu decoction on spatial learning and memory and cAMP-PKA-CREB-BDNF pathway in rat model of depression through chronic unpredictable stress. BMC complementary and alternative medicine. 2017;17(1):73. 131. Li X, Guo C, Li Y, Li L, Wang Y, Zhang Y, et al. Ketamine administered pregnant rats impair learning and memory in offspring via the CREB pathway. Oncotarget. 2017;8(20):32433-49. 132. Luo Y, Kuang S, Li H, Ran D, Yang J. cAMP/PKA-CREB-BDNF signaling pathway in hippocampus mediates cyclooxygenase 2-induced learning/memory deficits of rats subjected to chronic unpredictable mild stress. Oncotarget. 2017;8(22):35558-72. 133. Simon KR, dos Santos RM, Scaini G, Leffa DD, Damiani AP, Furlanetto CB, et al. DNA damage induced by phenylalanine and its analogue p-chlorophenylalanine in blood and brain of rats subjected to a model of hyperphenylalaninemia. Biochemistry and Cell Biology. 2013;91(5):319-24. 134. Hagen MEK, Pederzolli CD, Sgaravatti AM, Bridi R, Wajner M, Wannmacher CM, et al. Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2002;1586(3):344-52. 135. Dienel GA, Cruz NF. Biochemical, metabolic, and behavioral characteristics of immature chronic hyperphenylalanemic rats. Neurochemical research. 2016;41(1-2):16-32. 136. Mishra PK, Kutty BM, Laxmi TR. The impact of maternal separation and isolation stress during stress hyporesponsive period on fear retention and extinction recall memory from 5-week- to 1-year-old rats. Exp Brain Res. 2019;237(1):181-90. 137. Belzung C, Griebel G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behavioural brain research. 2001;125(1-2):141-9. 138. Pirondi S, Kuteeva E, Giardino L, Ferraro L, Antonelli T, Bartfai T, et al. Behavioral and neurochemical studies on brain aging in galanin overexpressing mice. Neuropeptides. 2005;39(3):305-12. 139. ETHOVISION XT AND THE OPEN FIELD TEST. 19 FEBRUARY, 2016. 140. Mathiasen JR, DiCamillo A. Novel object recognition in the rat: a facile assay for cognitive function. Curr Protoc Pharmacol. 2010;Chapter 5:5.59. 141. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical biochemistry. 1987;162(1):156-9. 142. Livak KJ, Wills QF, Tipping AJ, Datta K, Mittal R, Goldson AJ, et al. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods. 2013;59(1):71-9. 143. van Holst G-J, Clarke AE. Quantification of arabinogalactan-protein in plant extracts by single radial gel diffusion. Analytical biochemistry. 1985;148(2):446-50. 144. Olson BJ, Markwell J. Assays for determination of protein concentration. Current protocols in protein science. 2007;48(1):3.4. 1-3.4. 29. 145. Fuller HR, Goodwin PR, Morris GE. An enzyme-linked immunosorbent assay (ELISA) for the major crustacean allergen, tropomyosin, in food. Food and agricultural immunology. 2006;17(1):43-52. 146. Mariager B, S⊘ lve M, Eriksen H, Brogren CH. Bovine β‐lactoglobulin in hypoallergenic and ordinary infant formulas measured by an indirect competitive ELISA using monoclonal and polyclonal antibodies. Food and Agricultural immunology. 1994;6(1):73-83. 147. Sletten G, Løvberg K, Moen L, Skarpeid H-J, Egaas E. A comparison of time-resolved fluoroimmunoassay and ELISA in the detection of casein in foodstuffs. Food and agricultural immunology. 2005;16(3):235-43. 148. Teuber SS, Sathe SK, Peterson WR, Roux KH. Characterization of the soluble allergenic proteins of cashew nut (Anacardium occidentale L.). Journal of agricultural and food chemistry. 2002;50(22):6543-9. 149. Sakai S, Adachi R, Akiyama H, Teshima R. Validation of quantitative and qualitative methods for detecting allergenic ingredients in processed foods in Japan. Journal of agricultural and food chemistry. 2013;61(24):5675-80. 150. Konstantinou GN. Enzyme-Linked Immunosorbent Assay (ELISA). Food Allergens: Springer; 2017. p. 79-94. 151. Hasselmo ME. The role of acetylcholine in learning and memory. Current opinion in neurobiology. 2006;16(6):710-5. 152. van Spronsen FJ, van Wegberg AM, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. Key European guidelines for the diagnosis and management of patients with phenylketonuria. The lancet Diabetes & endocrinology. 2017;5(9):743-56. 153. Jahja R, van Spronsen FJ, de Sonneville LM, van der Meere JJ, Bosch AM, Hollak CE, et al. Social-cognitive functioning and social skills in patients with early treated phenylketonuria: a PKU-COBESO study. Journal of inherited metabolic disease. 2016;39(3):355-62. 154. Andersen AE, Guroff G. Enduring behavioral changes in rats with experimental phenylketonuria. Proceedings of the National Academy of Sciences. 1972;69(4):863-7. 155. Bruinenberg VM. Phenylketonuria in mice and men: Rijksuniversiteit Groningen; 2017. 156. Bruinenberg VM, van der Goot E, van Vliet D, de Groot MJ, Mazzola PN, Heiner-Fokkema MR, et al. The behavioral consequence of phenylketonuria in mice depends on the genetic background. Frontiers in behavioral neuroscience. 2016;10:233. 157. Fiori E, Oddi D, Ventura R, Colamartino M, Valzania A, D’Amato FR, et al. Early-onset behavioral and neurochemical deficits in the genetic mouse model of phenylketonuria. PloS one. 2017;12(8):e0183430. 158. Chan CB, Ye K. Sex differences in brain‐derived neurotrophic factor signaling and functions. Journal of neuroscience research. 2017;95(1-2):328-35. 159. Peng Y, Zhang C, Su Y, Wang Z, Jiang Y. Activation of the hippocampal AC-cAMP-PKA-CREB-BDNF signaling pathway using WTKYR in depression model rats. Electrophoresis. 2018. 160. Li X, Guo C, Li Y, Li L, Wang Y, Zhang Y, et al. Ketamine administered pregnant rats impair learning and memory in offspring via the CREB pathway. Oncotarget. 2017;8(20):32433. 161. Liu J, Liu Y, Wang XF, Chen H, Yang N. Antenatal taurine supplementation improves cerebral neurogenesis in fetal rats with intrauterine growth restriction through the PKA-CREB signal pathway. Nutritional neuroscience. 2013;16(6):282-7. 162. Mirisis AA, Alexandrescu A, Carew TJ, Kopec AM. The contribution of spatial and temporal molecular networks in the induction of long-term memory and its underlying synaptic plasticity. AIMS neuroscience. 2016;3(3):356. 163. Chen T, Zhu J, Yang L-K, Feng Y, Lin W, Wang Y-H. Glutamate-induced rapid induction of Arc/Arg3. 1 requires NMDA receptor-mediated phosphorylation of ERK and CREB. Neuroscience letters. 2017;661:23-8. 164. Li Z-Y, Huang Y, Yang Y-T, Zhang D, Zhao Y, Hong J, et al. Moxibustion eases chronic inflammatory visceral pain through regulating MEK, ERK and CREB in rats. World journal of gastroenterology. 2017;23(34):6220. 165. Shi YQ, Huang TW, Chen LM, Pan XD, Zhang J, Zhu YG, et al. Ginsenoside Rg1 attenuates amyloid-beta content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice. Journal of Alzheimer's disease : JAD. 2010;19(3):977-89. 166. Sakamoto K, Karelina K, Obrietan K. CREB: a multifaceted regulator of neuronal plasticity and protection. Journal of neurochemistry. 2011;116(1):1-9. 167. Lin R, Lin Y, Tao J, Chen B, Yu K, Chen J, et al. Electroacupuncture ameliorates learning and memory in rats with cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting p-CREB expression in the hippocampus. Molecular medicine reports. 2015;12(5):6807-14. 168. Chen X, Wang X, Tang L, Wang J, Shen C, Liu J, et al. Nhe5 deficiency enhances learning and memory via upregulating Bdnf/TrkB signaling in mice. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2017;174(8):828-38. 169. Lin R, Li X, Liu W, Chen W, Yu K, Zhao C, et al. Electro-acupuncture ameliorates cognitive impairment via improvement of brain-derived neurotropic factor-mediated hippocampal synaptic plasticity in cerebral ischemia-reperfusion injured rats. Experimental and therapeutic medicine. 2017;14(3):2373-9. 170. Diógenes MJ, Costenla AR, Lopes LV, Jerónimo-Santos A, Sousa VC, Fontinha BM, et al. Enhancement of LTP in aged rats is dependent on endogenous BDNF. Neuropsychopharmacology. 2011;36(9):1823. 171. Lee S, Campomanes C, Sikat P, Greenfield A, Allen P, McEwen B. Estrogen induces phosphorylation of cyclic AMP response element binding (pCREB) in primary hippocampal cells in a time-dependent manner. Neuroscience. 2004;124(3):549-60. 172. Konkle AT, McCarthy MM. Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology. 2011;152(1):223-35. 173. Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learning & Memory. 2015;22(9):472-93. 174. Karczmar AG. Brief presentation of the story and present status of studies of the vertebrate cholinergic system. Neuropsychopharmacology. 1993;9(3):181-99. 175. Everitt BJ, Robbins TW. Central cholinergic systems and cognition. Annual review of psychology. 1997;48(1):649-84. 176. Gold PE. Acetylcholine: cognitive and brain functions. Neurobiology of learning and memory (Print). 2003;80(3). 177. Collerton D. Cholinergic function and intellectual decline in Alzheimer's disease. Neuroscience. 1986;19(1):1-28. 178. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. Journal of Neurology, Neurosurgery & Psychiatry. 1999;66(2):137-47. 179. McKeith I, Mintzer J, Aarsland D, Burn D, Chiu H, Cohen-Mansfield J, et al. International psychogeriatric association expert meeting on DLB. Dementia with Lewy bodies Lancet Neurol. 2004;3(1):19-28. 180. Huerta PT, Lisman JE. Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro. Neuron. 1995;15(5):1053-63. 181. Adams SV, Winterer J, Müller W. Muscarinic signaling is required for spike‐pairing induction of long‐term potentiation at rat Schaffer collateral‐CA1 synapses. Hippocampus. 2004;14(4):413-6. 182. Cheong MY, Yun SH, Mook‐Jung I, Joo I, Huh K, Jung MW. Cholinergic modulation of synaptic physiology in deep layer entorhinal cortex of the rat. Journal of neuroscience research. 2001;66(1):117-21. 183. Patil MM, Linster C, Lubenov E, Hasselmo ME. Cholinergic agonist carbachol enables associative long-term potentiation in piriform cortex slices. Journal of neurophysiology. 1998;80(5):2467-74. 184. Perry EK. The cholinergic system in old age and Alzheimer's disease. Age and ageing. 1980;9(1):1-8. 185. Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. Journal of neurochemistry. 1986;47(1):263-77. 186. Landgraf D, Barth M, Layer PG, Sperling LE. Acetylcholine as a possible signaling molecule in embryonic stem cells: studies on survival, proliferation and death. Chem Biol Interact. 2010;187(1-3):115-9. 187. Shaltiel G, Hanan M, Wolf Y, Barbash S, Kovalev E, Shoham S, et al. Hippocampal microRNA-132 mediates stress-inducible cognitive deficits through its acetylcholinesterase target. Brain Struct Funct. 2013;218(1):59-72.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/22292
dc.description.abstractPhenylketonuria is a rare hereditary metabolic disease characterized by deficiency of phenylalanine hydroxylase. The absence of enzyme causes blood phenylalanine levels to rise. If patients are not treated, irreversible neurological damage can occur due to the accumulation of phenylalanine in the brain and, learning memory may be adversely affected. The hippocampus plays important roles in brain functions, including learning and memory. The cAMP/PKA/ CREB/BDNF pathway is associated with long-term learning and memory. In this thesis, the learning memory mechanism in phenylketonuria was examined through the cAMP/PKA/CREB/BDNF pathway in female and male rats. Phenylalanine hydroxylase enzyme inhibitor 4-Cl-phenylalanine and phenylalanine were applied to 6 day old rats by subcutaneous injection to establish rat phenylketonuria model. Locomotor activity, new object recognition and passive avoidance tests were performed to measure learning memory functions. Hippocampal metabolite concentrations, protein expressions of cAMP/PKA/CREB/pCREB/BDNF and mRNA expressions of PKA, CREB, BNDF, AChE and BChE were analyzed. Male rats displayed reduced locomotor activity compared to females. RT-qPCR results exhibited decreased AChE, BChE, CREB and BNDF mRNA levels in males along with CREB and BNDF levels in females. In protein analysis PKA activity was decreased in male rats whereas it increased in female rats. While the pCREB/CREB ratio was statistically increased in female PKU rats in male rats an increase trend was found. Our results display that in PKU model BNDF pathway and the levels of cholinergic system elements may differ by gender.tr_TR
dc.language.isoturtr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/restrictedAccesstr_TR
dc.subjectFenilketonüritr_TR
dc.subject.lcshBiyokimya. Hücre biyolojisi. Hücre genetiğitr_TR
dc.titleFenilketonüride Öğrenme Bellek Mekanizmasının Dişi Ve Erkek Sıçanlarda cAMP/PKA/CREB/BDNF Yolağı Üzerinden İncelenmesitr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetFenilketonüri, fenilalanin hidroksilaz enzim eksikliği ile karakterize nadir görülen bir kalıtsal metabolik hastalıktır. Bu enzimin yokluğu kan fenilalanin seviyesini yükselterek, beyinde fenilalanin birikmesine ve geri dönüşümsüz nörolojik hasar oluşması ile öğrenme ve belleği olumsuz yönde etkilemektedir. Hipokampus, öğrenme ve bellek gibi beyin fonksiyonlarında önemli roller oynar. cAMP /PKA /CREB/BDNF yolağının yapılan çalışmalar ile uzun süreli öğrenme ve bellek ile ilişkili olduğu gösterilmiştir. Bu tez kapsamında fenilketonüride bozulan öğrenme bellek mekaniz- masının dişi ve erkek sıçanlarda cAMP/PKA/CREB/BDNF yolağı ile ilişkisi incelendi. Fenilketonüri modeli oluşturmak için feninalanin hidroksilaz enzim inhibitörü 4-Cl-fenilalanin ve fenilalanin subkutan enjeksiyon ile 6 günlük sıçan yavrularına uygulandı. Lokomotor aktivite, yeni nesne tanıma ve pasif sakınma testleri yapıldı. Hipokampal dokuda cAMP /PKA /CREB /pCREB/BDNF metabolit miktarları, protein ifadeleri ve RT-qPCR ile PKA, CREB, BNDF, AChE ve BChE'ın mRNA ifadeleri analiz edildi. Cinsiyete göre analizlerde erkek PKU sıçanların dişi PKU sıçanlara göre lokomotor aktivitesinin azaldığı bulundu. PKU grubu erkek sıçanlar AChE, BChE, CREB ve BNDF mRNA seviyeleri, dişi PKU sıçanlarda CREB ve BNDF seviyelerinin azaldığı belirlendi. PKU erkek sıçanların PKA aktivitesi azalırken, dişi PKU sıçanların arttığı bulundu. pCREB/CREB oranı ise PKU dişilerde azaldığı tespit edildi. Sonuç olarak PKU modelinde BNDF yolağı ve kolinerjik sistem elemanlarının seviyelerinin cinsiyete göre farklılık gösterebileceği saptandı.tr_TR
dc.contributor.departmentBiyokimyatr_TR
dc.embargo.terms2 yiltr_TR
dc.embargo.lift2022-03-25T11:40:40Z
dc.fundingBilimsel Araştırma Projeleri KBtr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster