Basit öğe kaydını göster

dc.contributor.authorSelzer, RR
dc.contributor.authorNyaga, S
dc.contributor.authorTuo, JS
dc.contributor.authorMay, A
dc.contributor.authorMuftuoglu, M
dc.contributor.authorChristiansen, M
dc.contributor.authorCitterio, E
dc.contributor.authorBrosh, RM
dc.contributor.authorBohr, VA
dc.date.accessioned2019-12-16T10:29:19Z
dc.date.available2019-12-16T10:29:19Z
dc.date.issued2002
dc.identifier.issn0305-1048
dc.identifier.urihttps://doi.org/10.1093/nar/30.3.782
dc.identifier.urihttp://hdl.handle.net/11655/20089
dc.description.abstractCockayne syndrome (CS) is a rare inherited human genetic disorder characterized by UV sensitivity, developmental abnormalities and premature aging. The cellular and molecular phenotypes of CS include increased sensitivity to oxidative and UV-induced DNA lesions. The CSB protein is thought to play a pivotal role in transcription-coupled repair and CS-B cells are defective in the repair of the transcribed strand of active genes, both after exposure to UV and in the presence of oxidative DNA lesions. A previous study has indicated that a conserved helicase ATPase motif II residue is essential for the function of the CSB protein in responding to UV-induced DNA damage in a hamster cell line. Due to the limitations in studying a complex human disorder in another species, this study introduced the site-directed mutation of the ATPase motif II in the human CSB gene in an isogenic human cell line. The CSB mutant allele was tested for genetic complementation of UV-sensitive phenotypes in the human CS-B cell line CS1AN.S3.G2. In addition, the incision of an 8-oxoguanine lesion by extracts of the CS-B cell lines stably transfected with the wild-type or ATPase mutant CSB gene has been investigated. The ATPase motif II point mutation (E646Q) abolished the function of the CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery and apoptosis. Interestingly, whole-cell extract prepared from these mutant cells retained wild-type incision activity on an oligonucleotide containing a single 8-oxoguanine lesion, whereas the absence of the CSB gene altogether resulted in reduced incision activity relative to wild-type. These results suggest damage-specific functional requirements for CSB in the repair of UV-induced and oxidative lesions in human cells. The transfection of the mutant or wild-type CSB gene into the CS1AN.S3.G2 cells did not alter the expression of the subset of genes examined by cDNA array analysis.
dc.language.isoen
dc.publisherOxford Univ Press
dc.relation.isversionof10.1093/nar/30.3.782
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBiochemistry & Molecular Biology
dc.titleDifferential Requirement For The Atpase Domain Of The Cockayne Syndrome Group B Gene In The Processing Of Uv-Induced Dna Damage And 8-Oxoguanine Lesions In Human Cells
dc.typeinfo:eu-repo/semantics/article
dc.relation.journalNucleic Acids Research
dc.contributor.departmentBiyokimya
dc.identifier.volume30
dc.identifier.issue3
dc.identifier.startpage782
dc.identifier.endpage793
dc.description.indexWoS


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster