Show simple item record

dc.contributor.advisorÇelikcan, Ufuk
dc.contributor.authorUlutaş, Volkan
dc.date.accessioned2019-10-21T12:35:08Z
dc.date.issued2019-09-30
dc.date.submitted2019-09-18
dc.identifier.urihttp://hdl.handle.net/11655/9398
dc.description.abstractShoulder pain and discomfort are common and serious problems. Shoulder treatment benefits from a structured and repetitive program. In traditional physical rehabilitation programs, patients frequently perform exercises with intermittent feedback following the demonstrations from the physiotherapist. However, with at-home rehabilitation, the patient does not receive feedback after the initial demonstrations. This may lead to interruption in the treatment process, improper treatment and even self-inflicted injuries.This work propose Virtual Training Environment for Shoulder Exercises (ViTES) as a promising new tool to achieve sustained therapy practice and patient motivation for shoulder rehabilitation. ViTES can train users and assess their exercise performance concurrently with real-time recognition from incoming RGB-D data stream. To create the learning model that we use with ViTES, we also created V-Shoulder Dataset. The dataset consists of 739 exercise samples of 7 different shoulder treatment exercises in total and was created using Kinect RGB-D sensor. We validated the usability and the efficacy of ViTES by a two-part user study. In the first part, where the users evaluated ViTES via a short questionnaire, it was seen that all users regarded the system positively and found it easy to use. In the second part, we compared the similarities of the exercise movements performed by the users as automatically assessed by ViTES with respect to the model learned from the V-Shoulder Dataset. The results show that ViTES has a remarkable potential to be a beneficial tool in complementing the traditional physiotherapy process.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectİnsan hareket tanımatr_TR
dc.subjectVeri madenciliğitr_TR
dc.subjectOmuz egzersizi hareketlerinin sınıflandırılmasıtr_TR
dc.subjectRGB-D hareketlerinden öznitelik çıkartılmasıtr_TR
dc.subjectSanal egzersiz sistemitr_TR
dc.subjectDestek vektör makineleritr_TR
dc.subjectK-En yakın komşu algoritmasıtr_TR
dc.subjectKarar ağaçlarıtr_TR
dc.subjectYapay sinir ağlarıtr_TR
dc.subjectTopluluk öğrenmesitr_TR
dc.subjectHuman motion recognitiontr_TR
dc.subjectData miningtr_TR
dc.subjectClassification of shoulder exercise motionstr_TR
dc.subjectFeature extraction from RGB-D motiontr_TR
dc.subjectSupport vector machinestr_TR
dc.subjectVirtual training environment for shoulder exercisestr_TR
dc.subjectK-nearest neighbourstr_TR
dc.subjectDecision treetr_TR
dc.subjectMultilayer perceptrontr_TR
dc.subjectEnsemble learningtr_TR
dc.titleOmuz Egzersizlerinin RGB-D Verisi Kullanılarak Gerçek Zamanlı Kestirimi İçin Sanal Egzersiz Sistemitr_TR
dc.title.alternativeVirtual Training Framework For Shoulder Exercises With Real-Time Recognition From Rgb-D Data
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetOmuz ağrısı ve rahatsızlık çok yaygın olarak görülen ve ciddi problemlerdir. Omuz tedavisi yapılandırılmış ve tekrarlayan bir programdan yararlanır. Geleneksel fiziksel rehabilitasyon programlarında, hastalar sıklıkla fizyoterapistin hareketi öğretmesine takiben aralıklı geri bildirim ile egzersiz yaparlar. Bununla birlikte, evde yapılan rehabilitasyonda, hasta fizyoterapist tarafından herhangi bir geri bildirim almamaktadır. Bu, tedavi sürecinde kesintiye, yanlış tedaviye ve hatta kendi kendine yaralanmasına neden olabilir. Bu çalışma, Omuz Terapileri için Sanal Egzersiz Sistemi (ViTES), bağlılığı arttırıcı terapi uygulamaları ve omuz rehabilitasyonu için hasta motivasyonunu sağlamak için umut verici yeni bir araç olarak önerilmektedir. ViTES, kullanıcıları eğitebilir ve gelen RGB-D veri akışından gerçek zamanlı tanıma ile eş zamanlı olarak egzersiz performanslarını değerlendirebilir. Çalışma kapsamında ViTES ile kullanılan öğrenme modelini oluşturmak için V-Shoulder veriseti de oluşturuldu. Veri seti, toplam 7 farklı omuz tedavisi egzersizinin 739 egzersiz örneğinden oluşmakta ve Kinect RGB-D sensörü kullanılarak oluşturulmuştur. ViTES'in kullanılabilirliğini ve etkinliğini iki bölümden oluşan bir kullanıcı çalışması ile doğrulanmıştır. Kullanıcıların ViTES'i kısa bir anket aracılığıyla değerlendirdiği birinci bölümde, sistem tüm kullanıcılardan olumlu görüşler almasına ek olarak kullanıcılar sistemin kullanımının kolay olduğu bildirimini vermiştir. İkinci bölümde, V-Shoulder verisetinden öğrenilen veri madenciliği modeline göre, ViTES tarafından otomatik olarak analiz edilen omuz egzersiz hareketlerinin benzerliklerini karşılaştırıldı. Sonuçlar, ViTES'in geleneksel fizyoterapi sürecini tamamlamada yararlı bir araç olma konusunda dikkate değer bir potansiyele sahip olduğunu göstermektedir.tr_TR
dc.contributor.departmentBilgisayar Mühendisliğitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift-
dc.fundingYoktr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess