Basit öğe kaydını göster

dc.contributor.advisorÖZGÜR, FİGEN
dc.contributor.authorÇALIŞ, MERT
dc.date.accessioned2019-07-04T07:31:14Z
dc.date.issued2019-07-01
dc.date.submitted2019-06-28
dc.identifier.citation1. Mehrara BJ MJ. Repair and Grafting of Bone. In: SJ M, editor. Plastic Surgery 2ed. Philadelphia: Saunders Elsevier; 2006. p. 639-718. 2. Yu JC, Fearon J, Havlik RJ, Buchman SR, Polley JW. Distraction Osteogenesis of the Craniofacial Skeleton. Plastic and reconstructive surgery. 2004;114(1):1E-20E. Epub 2004/06/29. 3. Golas AR, Hernandez KA, Spector JA. Tissue engineering for plastic surgeons: a primer. Aesthetic Plast Surg. 2014;38(1):207-21. Epub 2014/01/01. 4. Zuk PA. Tissue engineering craniofacial defects with adult stem cells? Are we ready yet? Pediatric research. 2008;63(5):478-86. Epub 2008/04/23. 5. Calis M, Demirtas TT, Sert G, Irmak G, Gumusderelioglu M, Turkkani A, et al. Photobiomodulation with polychromatic light increases zone 4 survival of transverse rectus abdominis musculocutaneous flap. Lasers in surgery and medicine. 2019. Epub 2019/02/02. 6. Taner D. Fonksiyonel Anatomi : Ekstremiteler ve Sırt Bölgesi. Ankara: Hekimler Yayın Birliği; 1996. 7. Ovalle WK. NP. Kemiğin Yapısı. In: Müftüoğlu S KF, Atilla , P, editors. Netter Temel Histoloji. Ankara: Güneş Tıp Kitabevi; 2009. p. 131-56. 8. Moore KL. Overview of Anatomy. In: KL. M, editor. Clinically Oriented Anatomy. 3 ed. Baltimore: Williams & Wilkins; 1992. p. 11-6. 9. Junqueira L.C. CJ, Kelly R.O. Basic Histology. 7 ed. Lebanon: Appleton&Lange; 1992. 10. Mersher AL. Junqueira's Basic Histology. 12 ed. USA: McGraw-Hill Medical; 2009. 141-60 p. 11. Rosenberg A. Bones, Joints and Soft Tissue Tumors. In: Cotran R. KV, Collins T. , editor. Robbins Pathologic Basis of Disease. 6 ed. Philadelphia: W.B. Saunders Company; 1999. p. 1216-18. 12. Alperovich M, Lee ZH, Friedlander PL, Rowan BG, Gimble JM, Chiu ES. Adipose stem cell therapy in cancer reconstruction: a critical review. Ann Plast Surg. 2014;73 Suppl 1:S104-7. Epub 2014/07/09. 13. Bonewald LF. The Role of the Osteocyte in Bone and Nonbone Disease. Endocrinology and metabolism clinics of North America. 2017;46(1):1-18. Epub 2017/01/31. 14. Kylmaoja E, Nakamura M, Tuukkanen J. Osteoclasts and Remodeling Based Bone Formation. Current stem cell research & therapy. 2016;11(8):626-33. Epub 2015/10/20. 15. Online. wwwbcrcbioumassedu. 16. Calvert JW, Weiss LE, Sundine MJ. New frontiers in bone tissue engineering. Clinics in plastic surgery. 2003;30(4):641-8, x. Epub 2003/11/19. 17. Jenkins DD, Yang GP, Lorenz HP, Longaker MT, Sylvester KG. Tissue engineering and regenerative medicine. Clinics in plastic surgery. 2003;30(4):581-8. Epub 2003/11/19. 18. Megee DM, Berry N, Russell RC, Neumeister MW. Tissue engineering: bridging the gap between replantation and composite tissue allografts. Clinics in plastic surgery. 2007;34(2):319-25, xi. Epub 2007/04/10. 19. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-6. Epub 1993/05/14. 20. Vacanti CA. The history of tissue engineering. Journal of cellular and molecular medicine. 2006;10(3):569-76. Epub 2006/09/23. 21. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893-9. Epub 1965/11/12. 22. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et al. Novel regulators of bone formation: molecular clones and activities. Science. 1988;242(4885):1528-34. Epub 1988/12/16. 23. Zambonin G, Grano M, Greco G, Oreffo RO, Triffit JT. Hydroxyapatite coated with insulin-like growth factor 1 (IGF1) stimulates human osteoblast activity in vitro. Acta orthopaedica Scandinavica. 1999;70(2):217-20. Epub 1999/06/15. 24. Santos TC, Morton T, Moritz M, Pfeifer S, Reise K, Marques A, et al. VEGF and FGF-2 incorporation in starch-based bone tissue engineering constructs promote the in vivo expression of neovascularisation mediators. Tissue engineering Part A. 2012. Epub 2012/11/24. 25. Bai Y, Li P, Yin G, Huang Z, Liao X, Chen X, et al. BMP-2, VEGF and bFGF synergistically promote the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Biotechnology letters. 2012. Epub 2012/11/13. 26. Calvert JW, Marra KG, Cook L, Kumta PN, DiMilla PA, Weiss LE. Characterization of osteoblast-like behavior of cultured bone marrow stromal cells on various polymer surfaces. Journal of biomedical materials research. 2000;52(2):279-84. Epub 2000/08/22. 27. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials. 2007;28(19):3012-25. Epub 2007/04/06. 28. Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023-30. Epub 2008/11/22. 29. Panetta NJ, Gupta DM, Longaker MT. Bone tissue engineering scaffolds of today and tomorrow. J Craniofac Surg. 2009;20(5):1531-2. Epub 2009/10/10. 30. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529-43. Epub 2000/11/09. 31. Giordano RA, Wu BM, Borland SW, Cima LG, Sachs EM, Cima MJ. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. Journal of biomaterials science Polymer edition. 1996;8(1):63-75. Epub 1996/01/01. 32. Qi X, Ye J, Wang Y. Alginate/poly (lactic-co-glycolic acid)/calcium phosphate cement scaffold with oriented pore structure for bone tissue engineering. Journal of biomedical materials research Part A. 2009;89(4):980-7. Epub 2008/05/13. 33. Kozusko SD, Riccio C, Goulart M, Bumgardner J, Jing XL, Konofaos P. Chitosan as a Bone Scaffold Biomaterial. The Journal of craniofacial surgery. 2018;29(7):1788-93. Epub 2018/08/30. 34. Calis M, Demirtas TT, Vatansever A, Irmak G, Sakarya AH, Atilla P, et al. A Biomimetic Alternative to Synthetic Hydroxyapatite: "Boron-Containing Bone-Like Hydroxyapatite" Precipitated From Simulated Body Fluid. Annals of plastic surgery. 2017;79(3):304-11. Epub 2017/04/22. 35. Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32(34):8771-82. Epub 2011/09/10. 36. Reddi AH, Becerra J, Andrades JA. Nanomaterials and hydrogel scaffolds for articular cartilage regeneration. Tissue engineering Part B, Reviews. 2011;17(5):301-5. Epub 2011/05/21. 37. Gupta DM, Panetta NJ, Longaker MT. The use of polymer scaffolds in skeletal tissue engineering applications. The Journal of craniofacial surgery. 2009;20(3):860-1. Epub 2009/05/23. 38. Boccaccini AR, Blaker JJ. Bioactive composite materials for tissue engineering scaffolds. Expert review of medical devices. 2005;2(3):303-17. Epub 2005/11/18. 39. Kaynak G. Mikrodalga destekli çapraz bağlanma/çökeltme reaksiyonları ile kitosan-HA doku iskelelerinin hazırlanması ve kemik doku mühendisliğinde kullanımının araştırılması. Ankara: Hacettepe Üniversitesi; 2012. 40. Rizzatti-Barbosa CM, Ribeiro-Dasilva MC. Influence of double flask investing and microwave heating on the superficial porosity, surface roughness, and knoop hardness of acrylic resin. Journal of prosthodontics : official journal of the American College of Prosthodontists. 2009;18(6):503-6. Epub 2009/05/13. 41. Piatkowski M, Bogdal D, Ondruschka B. Microwave-assisted synthesis of poly(aspartic acid). Polimery-W. 2009;54(7-8):573-6. 42. Hedrick MH, Daniels EJ. The use of adult stem cells in regenerative medicine. Clinics in plastic surgery. 2003;30(4):499-505. Epub 2003/11/19. 43. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America. 1981;78(12):7634-8. Epub 1981/12/01. 44. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. Journal of neuroscience research. 2000;61(4):364-70. Epub 2000/08/10. 45. Wiles MV, Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development. 1991;111(2):259-67. Epub 1991/02/01. 46. Dani C, Smith AG, Dessolin S, Leroy P, Staccini L, Villageois P, et al. Differentiation of embryonic stem cells into adipocytes in vitro. Journal of cell science. 1997;110 ( Pt 11):1279-85. Epub 1997/06/01. 47. Rohwedel J, Maltsev V, Bober E, Arnold HH, Hescheler J, Wobus AM. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Developmental biology. 1994;164(1):87-101. Epub 1994/07/01. 48. Kramer J, Hegert C, Guan K, Wobus AM, Muller PK, Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mechanisms of development. 2000;92(2):193-205. Epub 2000/03/23. 49. Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Jr., Reagan CR, et al. Mesenchymal stem cells reside within the connective tissues of many organs. Developmental dynamics : an official publication of the American Association of Anatomists. 1995;202(2):137-44. Epub 1995/02/01. 50. Warejcka DJ, Harvey R, Taylor BJ, Young HE, Lucas PA. A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotypes. The Journal of surgical research. 1996;62(2):233-42. Epub 1996/05/01. 51. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell. 2002;13(12):4279-95. Epub 2002/12/12. 52. Aksu AE, Rubin JP, Dudas JR, Marra KG. Role of gender and anatomical region on induction of osteogenic differentiation of human adipose-derived stem cells. Annals of plastic surgery. 2008;60(3):306-22. Epub 2008/04/30. 53. Tholpady SS, Llull R, Ogle RC, Rubin JP, Futrell JW, Katz AJ. Adipose tissue: stem cells and beyond. Clinics in plastic surgery. 2006;33(1):55-62, vi. Epub 2006/01/24. 54. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering. 2001;7(2):211-28. Epub 2001/04/17. 55. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells. 2005;23(3):412-23. Epub 2005/03/08. 56. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells, tissues, organs. 2003;174(3):101-9. Epub 2003/07/02. 57. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7-14. Epub 2004/02/27. 58. Baer PC, Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem cells international. 2012;2012:812693. Epub 2012/05/12. 59. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circulation research. 2008;102(1):77-85. Epub 2007/10/31. 60. Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circulation research. 2009;104(12):1410-20. Epub 2009/05/16. 61. Kapur SK, Katz AJ. Review of the adipose derived stem cell secretome. Biochimie. 2013;95(12):2222-8. Epub 2013/06/19. 62. Salgado AJ, Reis RL, Sousa NJ, Gimble JM. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010;5(2):103-10. Epub 2009/11/28. 63. Kiess W, Petzold S, Topfer M, Garten A, Bluher S, Kapellen T, et al. Adipocytes and adipose tissue. Best Pract Res Clin Endocrinol Metab. 2008;22(1):135-53. Epub 2008/02/19. 64. Kim WS, Park BS, Sung JH. The wound-healing and antioxidant effects of adipose-derived stem cells. Expert Opin Biol Ther. 2009;9(7):879-87. Epub 2009/06/16. 65. Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res. 2014;163(4):399-408. Epub 2013/12/24. 66. McIntosh KR. Evaluation of cellular and humoral immune responses to allogeneic adipose-derived stem/stromal cells. Methods Mol Biol. 2011;702:133-50. Epub 2010/11/18. 67. Li MO, Flavell RA. Contextual regulation of inflammation: a duet by transforming growth factor-beta and interleukin-10. Immunity. 2008;28(4):468-76. Epub 2008/04/11. 68. Hammami I, Chen J, Bronte V, DeCrescenzo G, Jolicoeur M. L-glutamine is a key parameter in the immunosuppression phenomenon. Biochem Biophys Res Commun. 2012;425(4):724-9. Epub 2012/08/14. 69. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Experimental neurology. 2003;183(2):355-66. Epub 2003/10/14. 70. Baer PC, Schubert R, Bereiter-Hahn J, Plosser M, Geiger H. Expression of a functional epidermal growth factor receptor on human adipose-derived mesenchymal stem cells and its signaling mechanism. Eur J Cell Biol. 2009;88(5):273-83. Epub 2009/01/27. 71. Calis M, Demirtas TT, Atilla P, Tatar I, Ersoy O, Irmak G, et al. Estrogen as a novel agent for induction of adipose-derived mesenchymal stem cells for osteogenic differentiation: in vivo bone tissue-engineering study. Plast Reconstr Surg. 2014;133(4):499e-510e. Epub 2014/03/29. 72. Tholpady SS, Katz AJ, Ogle RC. Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. The anatomical record Part A, Discoveries in molecular, cellular, and evolutionary biology. 2003;272(1):398-402. Epub 2003/04/22. 73. Huang JI, Zuk PA, Jones NF, Zhu M, Lorenz HP, Hedrick MH, et al. Chondrogenic potential of multipotential cells from human adipose tissue. Plastic and reconstructive surgery. 2004;113(2):585-94. Epub 2004/02/06. 74. Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH. Myogenic differentiation by human processed lipoaspirate cells. Plastic and reconstructive surgery. 2002;109(1):199-209; discussion 10-1. Epub 2002/01/12. 75. Halvorsen YC, Wilkison WO, Gimble JM. Adipose-derived stromal cells--their utility and potential in bone formation. International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity. 2000;24 Suppl 4:S41-4. Epub 2000/12/29. 76. Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nature biotechnology. 2004;22(5):560-7. Epub 2004/04/13. 77. Lendeckel S, Jodicke A, Christophis P, Heidinger K, Wolff J, Fraser JK, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery. 2004;32(6):370-3. Epub 2004/11/24. 78. Hosseinpour S, Fekrazad R, Arany PR, Ye Q. Molecular impacts of photobiomodulation on bone regeneration: A systematic review. Progress in biophysics and molecular biology. 2019. Epub 2019/04/20. 79. Dodd EM, Winter MA, Hordinsky MK, Sadick NS, Farah RS. Photobiomodulation therapy for androgenetic alopecia: A clinician's guide to home-use devices cleared by the Federal Drug Administration. Journal of cosmetic and laser therapy : official publication of the European Society for Laser Dermatology. 2018;20(3):159-67. Epub 2017/10/12. 80. Lubart R, Lavi R, Friedmann H, Rochkind S. Photochemistry and photobiology of light absorption by living cells. Photomedicine and laser surgery. 2006;24(2):179-85. Epub 2006/05/19. 81. Aimbire F, Albertini R, Pacheco MT, Castro-Faria-Neto HC, Leonardo PS, Iversen VV, et al. Low-level laser therapy induces dose-dependent reduction of TNFalpha levels in acute inflammation. Photomedicine and laser surgery. 2006;24(1):33-7. Epub 2006/03/01. 82. Bayat M, Azari A, Golmohammadi MG. Effects of 780-nm low-level laser therapy with a pulsed gallium aluminum arsenide laser on the healing of a surgically induced open skin wound of rat. Photomedicine and laser surgery. 2010;28(4):465-70. Epub 2009/10/03. 83. Kropp R. (Niels Ryberg Finsen). Pneumologie. 2014;68(10):696-9. Epub 2014/10/08. Niels Ryberg Finsen. 84. Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. American journal of surgery. 1971;122(4):532-5. Epub 1971/10/01. 85. Smith RJ, Birndorf M, Gluck G, Hammond D, Moore WD. The effect of low-energy laser on skin-flap survival in the rat and porcine animal models. Plastic and reconstructive surgery. 1992;89(2):306-10. Epub 1992/02/01. 86. Szymanska J, Goralczyk K, Klawe JJ, Lukowicz M, Michalska M, Goralczyk B, et al. Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2013;64(3):387-91. Epub 2013/08/21. 87. Tuby H, Maltz L, Oron U. Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers in surgery and medicine. 2007;39(4):373-8. Epub 2007/04/26. 88. Gupta A, Avci P, Sadasivam M, Chandran R, Parizotto N, Vecchio D, et al. Shining light on nanotechnology to help repair and regeneration. Biotechnology advances. 2013;31(5):607-31. Epub 2012/09/07. 89. Gumusderelioglu M. Fototerapinin Yeri. Bilim ve Teknik, TÜBİTAK Yayınları. Şubat 2015. 90. Fushimi T, Inui S, Nakajima T, Ogasawara M, Hosokawa K, Itami S. Green light emitting diodes accelerate wound healing: characterization of the effect and its molecular basis in vitro and in vivo. Wound repair and regeneration : official publication of the Wound Healing Society (and) the European Tissue Repair Society. 2012;20(2):226-35. Epub 2012/03/03. 91. Cakmak AS, Cakmak S, Vatansever HS, Gumusderelioglu M. Photostimulation of osteogenic differentiation on silk scaffolds by plasma arc light source. Lasers in medical science. 2017. Epub 2017/12/19. 92. Hollinger JO, Schmitt JM, Buck DC, Shannon R, Joh SP, Zegzula HD, et al. Recombinant human bone morphogenetic protein-2 and collagen for bone regeneration. Journal of biomedical materials research. 1998;43(4):356-64. Epub 1998/12/17. 93. Zong C, Xue D, Yuan W, Wang W, Shen D, Tong X, et al. Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds. European cells & materials. 2010;20:109-20. Epub 2011/01/21. 94. Rogers JJ, Young HE, Adkison LR, Lucas PA, Black AC, Jr. Differentiation factors induce expression of muscle, fat, cartilage, and bone in a clone of mouse pluripotent mesenchymal stem cells. The American surgeon. 1995;61(3):231-6. Epub 1995/03/01. 95. Sharma RK, Lee CA, Gunasekaran S, Knight LC, Bielby M. Stenting for bilateral congenital choanal atresia--a new technique. International journal of pediatric otorhinolaryngology. 2006;70(5):869-74. Epub 2005/11/19. 96. Çapkın M. Sıçan kemik iliğinden ve yağ dokusundan elde edilen mezenkimal kök hücrelerin PCL, PCL-kollajen nanofibröz yüzeylerde sinir hücrelerine farklılaştırılması. Bornova-İzmir: Ege Üniversitesi; 2010. 97. Mayle A, Luo M, Jeong M, Goodell MA. Flow cytometry analysis of murine hematopoietic stem cells. Cytometry Part A : the journal of the International Society for Analytical Cytology. 2012. Epub 2012/06/28. 98. Karaoz E, Aksoy A, Ayhan S, Sariboyaci AE, Kaymaz F, Kasap M. Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers. Histochemistry and cell biology. 2009;132(5):533-46. Epub 2009/08/19. 99. Perry CR. Bone repair techniques, bone graft, and bone graft substitutes. Clin Orthop Relat Res. 1999(360):71-86. Epub 1999/04/02. 100. Schaefer RB, Stadler JA, 3rd, Gosain AK. To distract or not to distract: an algorithm for airway management in isolated Pierre Robin sequence. Plastic and reconstructive surgery. 2004;113(4):1113-25. Epub 2004/04/15. 101. Sesenna E, Magri AS, Magnani C, Brevi BC, Anghinoni ML. Mandibular distraction in neonates: indications, technique, results. Italian journal of pediatrics. 2012;38:7. Epub 2012/02/04. 102. McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH. Lengthening the human mandible by gradual distraction. Plastic and reconstructive surgery. 1992;89(1):1-8; discussion 9-10. Epub 1992/01/01. 103. Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Khoshzaban A, Keshel SH, et al. Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2009;108(2):e1-6. Epub 2009/07/21. 104. van Hout WM, Mink van der Molen AB, Breugem CC, Koole R, Van Cann EM. Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2. Clinical oral investigations. 2011;15(3):297-303. Epub 2011/04/06. 105. Vergroesen PP, Kroeze RJ, Helder MN, Smit TH. The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model. Macromolecular bioscience. 2011;11(6):722-30. Epub 2011/03/15. 106. Rada T, Santos TC, Marques AP, Correlo VM, Frias AM, Castro AG, et al. Osteogenic differentiation of two distinct subpopulations of human adipose-derived stem cells: an in vitro and in vivo study. Journal of tissue engineering and regenerative medicine. 2012;6(1):1-11. Epub 2011/02/05. 107. Wan DC, Shi YY, Nacamuli RP, Quarto N, Lyons KM, Longaker MT. Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor type IB signaling. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(33):12335-40. Epub 2006/08/09. 108. Chevallier N, Anagnostou F, Zilber S, Bodivit G, Maurin S, Barrault A, et al. Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials. 2010;31(2):270-8. Epub 2009/09/29. 109. Shuqiang M, Kunzheng W, Xiaoqiang D, Wei W, Mingyu Z, Daocheng W. Osteogenic growth peptide incorporated into PLGA scaffolds accelerates healing of segmental long bone defects in rabbits. Journal of plastic, reconstructive & aesthetic surgery: JPRAS. 2008;61(12):1558-60. Epub 2008/08/05. 110. Garcia P, Speidel V, Scheuer C, Laschke MW, Holstein JH, Histing T, et al. Low dose erythropoietin stimulates bone healing in mice. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. 2011;29(2):165-72. Epub 2010/08/27. 111. Mester E, Spiry T, Szende B, Tota JG. (Effect of laser radiation on the wound healing). Zeitschrift fur experimentelle Chirurgie. 1971;4(5):307-12. Epub 1971/01/01. Wirkung der Laserstrahlen auf die Wundheilung. 112. Mester E, Varteresz V, Doklen A, Gartner J, Hejjas M. (Effect of laser rays on hemoglobin synthesis in vitro). Radiobiologia, radiotherapia. 1971;12(5):669-75. Epub 1971/01/01. Die Wirkung der Laserstrahlen auf die Hamoglobinsynthese in vitro. 113. Zegzula HD, Buck DC, Brekke J, Wozney JM, Hollinger JO. Bone formation with use of rhBMP-2 (recombinant human bone morphogenetic protein-2). The Journal of bone and joint surgery American volume. 1997;79(12):1778-90. Epub 1997/12/31. 114. Bogdanovic J, Halsey NA, Wood RA, Hamilton RG. Bovine and porcine gelatin sensitivity in children sensitized to milk and meat. The Journal of allergy and clinical immunology. 2009;124(5):1108-10. Epub 2009/08/12. 115. Hutson CB, Nichol JW, Aubin H, Bae H, Yamanlar S, Al-Haque S, et al. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels. Tissue engineering Part A. 2011;17(13-14):1713-23. Epub 2011/02/11. 116. Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000;1(1):31-8. Epub 2001/11/17. 117. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010;31(21):5536-44. Epub 2010/04/27. 118. Sutter M, Siepmann J, Hennink WE, Jiskoot W. Recombinant gelatin hydrogels for the sustained release of proteins. Journal of controlled release : official journal of the Controlled Release Society. 2007;119(3):301-12. Epub 2007/05/01.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/7724
dc.description.abstractThe aim of this study was to evaluate the regenerative effect of photobiomodulation (PBM) administered using polychromatic light sources on bone formation and on differentiation of adipose derived mesenchymal stem cells. 36 Sprague-Dawley male rats were divided into 3 equal groups randomly biparietal full thickness cranial bone defects (6mm. in diameter) were created. First group eas the control group, and the second group recieved metacrylated gelatin hydrogel scaffold (JEL-MA). Third experimental group was treated with adiposed derived mesenchymal stem cells loaded metacrylated gelatin hydrogel scaffold (AkMKH+JEL-MA). Each group was subdivided and half of them received FBM while other half did not. Macroscopic, histologic and microtomographic assessments were performed at 20th week after transplantation to evaluate bone formation. Histologically, in means of new bone formation significantly better results were observed in JEL-MA and AkMKH+JEL-MA groups compared to control group (p<0,001). Microtomographic evaluation revealed highest bone formation in AkMKH+JEL-MA group. FBM – samples show 60,62±6.34 percent bone formation in average whereas FBM+ samples displayed mean 79,93±3,41 percent of bone formation. FBM administration significantly affected mikrotomographic results bone formation (p=0,002). In conclusion, administration of photobiomodulation in polychromatic fashion appears to stimulates new bone formation and may stimulate adipose derived mesenchymal stem cells on osteogenic differentiation.tr_TR
dc.description.tableofcontentsONAY SAYFASI iii YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI iii ETİK BEYANI v TEŞEKKÜR vi ÖZET vii ABSTRACT viii İÇİNDEKİLER ix SİMGELER VE KISALTMALAR xii TABLOLAR xiii ŞEKİLLER xiv 1. GİRİŞ 1 2. GENEL BİLGİLER 2 2.1. KEMİK DOKU ANATOMİSİ 2 2.2. KEMİK DOKU HİSTOLOJİSİ 3 2.3. TIPTA DOKU MÜHENDİSLİĞİ UYGULAMALARI 5 2.4. KEMİK DOKU MÜHENDİSLİĞİ 6 2.4.1. Tarihçe 6 2.4.2. Kemik doku mühendisliğinde tercih edilen doku iskelesi özellikleri ve kullanılan polimerler 7 2.4.3. Doku iskeleleri ve üretim yöntemleri 9 2.5. KÖK HÜCRE KAVRAMI 9 2.5.1. Yağ Dokusu ve Mezenkimal Kök Hücreler 11 2.5.2. Yağ Dokusundan Türetilmiş Kök Hücrelerin biyolojik özellikleri ve İn Vitro/İn Vivo Farklılaşma Potansiyelleri 12 2.6. FOTOTERAPİ KAVRAMI 15 2.6.1. Düşük seviyeli lazer ve Işık yayan diyot kavramları 16 2.6.2. Plazma ark ışık kaynakları 18 2.6.3. Fotobiyomodülasyonun hücresel düzeyde etkileri 18 2.6.4. Fotobiyomodülasyonun hücreler üzerindeki etkisi 21 3. GEREÇ ve YÖNTEM 22 3.1. ÇALIŞMADA KULLANILAN KİMYASAL MADDELER VE BİYOLOJİK MATERYALLER 22 3.2. ÇALIŞMADA KULLANILAN DOKU İSKELESİ MODELİ 22 3.2.1. Metakrilatlanmış Hidrojel Doku İskelesinin yapısı ve üretimi 23 3.2.2. Metakrilatlanmış Hidrojel Doku İskelesinin Karakterizasyonu 23 3.3. ÇALIŞMADA KULLANILAN AkMKHLERİN İZOLE EDİLMESİ 24 3.3.1. Sıçan Yağ Dokusundan Mezenkimal Kök Hücre (AkMKH) İzolasyonu ve pasajlanması 24 3.3.2. AkMKH'lerin karakterizasyonu ve in vivo uygulanması 25 3.4. FOTOBİYOMODÜLASYON İÇİN KULLANILAN IŞIK KAYNAĞI 25 3.5. DENEY GRUPLARI 26 3.6. ANESTEZİ 27 3.7. CERRAHİ İŞLEM 28 3.8. CERRAHİ SONRASI İZLEM 29 3.9. ÖTENAZİ 29 3.10. MAKROSKOPİK DEĞERLENDİRME 29 3.11. HİSTOLOJİK DEĞERLENDİRME 29 3.12. MİKRO TOMOGRAFİK DEĞERLENDİRME 30 3.13. İSTATİSTİKSEL DEĞERLENDİRME 31 4. BULGULAR 32 4.1. HİDROJEL DOKU İSKELESİNİN METAKRİLATLANMA DERECESİ VE KARAKTERİZASYON SONUÇLARI 32 4.2. AkMKH’LERİN KARAKTERİZASYON ANALİZ BULGULARI 32 4.3. MAKROSKOPİK BULGULAR 33 4.4. HİSTOLOJİK BULGULAR 35 4.4.1. Birinci grup – Kontrol / Kritik boyutlu kemik defekti grubu 35 4.4.2. İkinci grup – hücresiz metakrilatlanmış hidrojel doku iskelesi grubu, (JEL-MA) 37 4.4.3. Üçüncü grup – kök hücre içeren metakrilatlanmış hidrojel doku iskelesi grubu, (JEL-MA+AKMKH) 39 4.5. MİKRO TOMOGRAFİ BULGULARI 44 5. TARTIŞMA 47 6. SONUÇ 54 7. KAYNAKÇA 55 8. EKLER 68 Ek 1. Turnitin Dijital Makbuz 68 Ek 2. Turnitin Orijinalik Raporu 69 Ek 3. Etik Kurul Onayı 70 9. ÖZGEÇMİŞ 71tr_TR
dc.language.isoturtr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectfotobiyomodülasyontr_TR
dc.subject.lcshKonu Başlıkları Listesi::Tıptr_TR
dc.titleFototerapinin Yağ Dokusundan Türetilmiş Mezenkimal Kök Hücrelerin Osteojenik İndüksiyonuna Etkilerinin Metakrilatlanmış Jelatin Hidrojel ile Rekonstrükte Edilmiş Kritik Boyutlu Kraniyal Kemik Defekti Modelinde Değerlendirilmesitr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesisen
dc.description.ozetBu çalışmada amaçlanan, polikromatik yolla uygulanan fotobiyomodülasyon (FBM) yaklaşımının kemik doku üzerinde rejeneratif etkisinin ve yağ dokusundan elde edilen mezenkimal kök hücrelerin farklılaşması üzerindeki etkilerinin değerlendirilmesidir. Çalışmada 36 adet male Sprague-Dawley sıçan kullanılmış ve hayvanlar 3 eşit deney grubuna randomize olarak ayrılmıştır. Tüm hayvanlarda biparietal, 6 mm. çapında, yuvarlak ve tam kalınlıkta kemik defektleri meydana getirildi. Birinci deney grubu kontrol grubu iken, ikinci grubu sadece metakrilatlanmış jelatin yapıda hidrojel doku iskelesi (JEL-MA, üçüncü grubu ise adipoz kökenli mezenkimal kök hücre (AkMKH) yüklenmiş metakrilatlanmış jelatin yapıda hidrojel doku iskelesi (AkMKH+JEL-MA) içermekteydi. Tüm gruplar kendi içinde iki alt gruba ayrılarak yarısına FBM uygulanırken, diğer yarısına uygulanmadı. Kemikleşmenin değerlendirilebilmesi amacıyla cerrahi işlem sonrası 20. haftada hayvanlar sakrifiye edilerek kalvariyal kemikler bütün olarak çıkarıldı. Elde edilen örnekler makroskopik, histolojik ve mikrotomografik olarak değerlendirildi. Histolojik olarak yeni kemik oluşumu açısından en yüksek değerler JEL-MA ve JEL-MA+AkMKH gruplarında saptanmıştır ve kontrol grubuyla karşılaştırıldığında anlamlı farklılık saptanmıştır (p<0,001). Mikrotomografik değerlendirme sonucunda en yüksek kemikleşme yüzdesi JEL-MA+AkMKH'lerin uygulandığı grupta elde edilmiştir. FBM- örneklerde ortalama olarak yüzde 60,62±6,34 kemikleşme gözlenmişken, FBM+ olan örneklerde ortalama kemikleşme yüzdesi 79,93±3,41 olarak tespit edilmiştir. Fotobiyomodülasyon alma durumuna göre JEL-MA+AkMKH grubuna ait sonuçlar karşılaştırıldığında anlamlı olarak fotobiyomodülasyon uygulama durumunun fark yarattığı gözlemlenmektedir (p=0,002). Sonuç olarak, polikromatik ışık kaynakları yoluyla fotobiyomodülasyon uygulamasının kemik iyileşmesine olumlu etkileri olduğu ve yağ dokusundan türetilmiş kök hücrelerin osteojenik farklılaşmasında uyarıcı etkisi olabileceği yönünde fikir vermiştir.tr_TR
dc.contributor.departmentPlastik ve Rekonstrüktif Cerrahitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2019-07-04T07:31:14Z
dc.identifier.ORCID0000-0001-9907-2220tr_TR
dc.subtypemedicineThesis


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster