Basit öğe kaydını göster

dc.contributor.advisorEkmekçi, Yasemin
dc.contributor.authorBaran, Uğurcan
dc.date.accessioned2019-01-14T11:11:55Z
dc.date.issued2018
dc.date.submitted2018-10-21
dc.identifier.citationAdıgüzel, N., Reeves, R.D., Important Serpentine Areas of Turkey and Distribution Patterns of Serpentine Endemics and Nickel Accumulators, Bocconea, 24 (2012) 7-17. Ahmad, M.S.A. and Ashraf, M., Essential Roles and Hazardous Effects of Nickel in Plants, Reviews of Environmental Contamination and Toxicology, 214 (2011) 134-135. Ahmad, S., Ahmad, R., Ashraf, M. Y., Ashraf, M., Waraich, E. A., Sunflower (Helianthus annuus L.) Response to Drought Stress at Germination and Seedling Growth Stages, Pakistan Jornal of Botany, 41 (2009) 647-654. Ali, M.B., Vajpayee, P., Tripathi, R.D., Rai, U.N., Singh, S.N., Singh, S.P., Phytoremediation of Lead, Nickel, and Copper by Salix acmophylla Boiss.: Role of Antioxidant Enzymes and Antioxidant Substances, Bulletin of Environmental Contamination and Toxicology, 70 (2003) 462–469. Alsher R.G., Donahue J.L. and Cramer C., Reactive Oxygenspecies and Antioxidants: Relationships in Green Cells, Physiologia Plantarum, 100 (1997) 224–233. Amari, T., Lutts, S., Taamali, M., Lucchini, G., Sacchi, G. A., Abdelly, C., Ghnaya, T., Implication of Citrate, Malate and Histidine in the Accumulation and Transport Nickel in Mesembryanthemum crystallinum and Brassica juncea, Ecotoxicology and Environmental Safety, 126 (2016) 122-128. Anjum, N.A., Singh, H.P., Khan, M.I.R., Masood, A., Per, T.S., Negi, A., Batish, D.R., Khan, N.A., Duarte, A.C., Pereira, E., Ahmad, I., Too Much is Bad an Appraisal of Phytotoxicity of Elevated Plant Beneficial Heavy Metal İons, Environmental Science And Pollution Research, 22 (2015a) 3361- 3382. Anjum, N.A., Hasanuzzaman, M., Hossain, M.A., Thangavel, P., Roychoudhury, A., Gill, S.S., Rodrigo, M.A.M., Adam, V., Fujita, M., Kizek, R., Duarte, 80 A.C., Pereira, E., Ahmad, I., Jacks of Metal/Metalloid Chelation Trade in Plants, an overview, Frontiers in Plant Science, 6 (2015b) 1-17. Apel, K. and Hirt, H., Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction, Annual Review of Plant Biology, 55 (2004) 373– 99. Aravind, P. and Prasad, M.N.V., Zn Protects Chloroplasts and Associated Photochemical Functions in Cadmium Exposed Ceratophyllum demersum L., a Freshwater Macrophyte, Plant Science, 166 (2004) 1321 – 1327. Arslan, Ö., Eyidoğan, F. and Ekmekçi, Y., Freezing tolerance of chickpea: biochemical and molecular changes at vegetative stage, Biologia Plantarum, 62 (2018) 140-148. Asada, K. and Takahashi, M. Production and Scavenging of Active Oxygen in Chloroplasts. In: Kyle, D.J., Osmond, C.B. and Arntzen, C.J., (Eds.), Photoinhibition, Elsevier, Amsterdam, 227-287, 1987. Asada, K., Iho, K. and Yoshıkawa, K., Univalent Reduction of Molecular Oxygen by Spinach Chloroplasts on Illumination, The Journal of Biological Chemistry, 49 (1974) 2175-2181. Asada, K., The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons, Annual Review of Plant Biology, 50 (1999) 601-639. Ashraf, M.Y., Sadiq, R., Hussain, M., Ashraf, M., Ahmad, M.S.A., Oxic Effect of Nickel (Ni) on Growth and Metabolism in Germinating Seeds of Sunflower (Helianthus annuus L.), Biological Trace Element Research, 143 (2011) 1695-1703. Aybar, M., Bflgfn, A., Sağlam, B., Fftoremedfasyon Yöntemf İle Topraktakf Ağır Metallerfn Gfderfmf, Doğal Afetler ve Çevre Dergfsf, 1 (2015) 59-65. Ayhan, B., Ekmekçf, Y., Tanyolaç, D., Bftkflerde ağır metal zararları ve korunma mekanfzmaları, Anadolu Ünfversftesf Bflfm ve Teknolojf Dergfsf, 7 (2006) 1-16. Ayhan, B., Mısır (Zea mays)’ın Bazı Çeşitlerinde Ağır Metal (Cd+2, Pb+2) Stresinin Etkilerinin Belirlenmesi, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2006. Babaoğlu, M., Aspir Bitkisi Ve Tarımı, Trakya Tarımsal Araştırmalar Enstitüsü, Edirne, 2007. 81 Bauddha, K., Singh, K., Singh, B., Singh, R.P., Ricinus communis: A Robust Plant for Bio-Energy and Phytoremediation of Toxic Metals from Contaminated Soil, Ecological Engineering, 84 (2015) 640-652. Bergmeyer, H.U., Bernt, E., Glutamate-Oxaloacetate Transaminase, Methods of Enzymatic Analysis, 2 (1974) 727-733. Berti, W. R. and Cunningham, S.D., Phytostabilization Of Metals, 2000. Beyer, W. F., Fridovich, I., Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions, Analytical Biochemistry, 161 (1987) 559-566. Bhalerao, S.A., Sharma, A.S., Poojari, A.C., Toxicity of Nickel in Plants, International Journal of Pure and Applied Bioscience, 3 (2015) 345-355. Bishnoi, N.R., Sheoran, I.S., and Singh, R., Influence of Cadmium and Nickel on Photosynthesis and Water Relations in Wheat Leaves of Different Insertion Level, Photosynthetica, 28 (1993) 473–479. Blumenthal, C., Bekes, F., Wrigley, C., Barlow, E., The Acquisition and Maintenance of Thermotolerance in Australian Wheats, Functional Plant Biology, 17 (1990) 37-47. Boisvertetal, S., Inhibition of the Oxygen-Evolving Complex of Photosystem II and Depletion of Extrinsic Polypeptides by Nickel, Biometals, 20 (2007) 879 – 889. Boominathan, R., Doran, P. M., Ni-induced Oxidative Stress in Roots of the Ni Hyperaccumulator, Alyssum bertolonii, New Phytologist 156 (2002) 205– 215. Bradford, M.M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Analytical Biochemistry, 72 (1976) 248-254. Bray, E.A., Bailey-Serres, J. and Weretilnyk, Responses to Abiotic Stress. Biochemistry & Molecular Biology of Plants, Gruissem, W. and Jones, R., (Eds), American Society of Plant Physiologists, Rockville, 1158-1203, 2000. Breusegem, F.V., Vranová, E., Dat, J. and Inze, D., The Role of Active Oxygen Species in Plant Signal Transduction, Plant Science 161(2001) 405-414. 82 Brooks, R.R., Shaw, S., Marfil, A.A., The Chemical Form and Physiological Function of Nickel in Some Iberian Alyssum species, Physiologia Plantarum, 51 (1981) 167 – 170. Burd, G.I., Dixon, D.G., Glick, B.R., Plant Growth-Promoting Bacteria that Decrease Heavy Metal Toxicity in Plants, Canadian Journal of Microbiology, 46 (2000) 237-245. Büyük İ., Soydam-Aydın S. ve Aras S., Bftkflerfn Stres Koşullarına Verdfğf Moleküler Cevaplar, Türk Hfjyen ve Deneysel Biyoloji Dergisi, 69 (2012) 97-110. Cai, H., Dong, Y., Peng, C., Li, Y., Xu, W., Li, D., Wana, X., Fluoride-Induced Responses in the Chlorophyll Content and the Antioxidant System in Tea Leaves (Camellia sinensis), Research Report Fluoride, 50 (2017) 59-78. Cakmak, I. and Horst, J.H. Effects of Aluminum on Lipid Peroxidation, Superoxide Dismutase, Catalase, and Peroxidase Activities in Root Tips of Soybean (Glycine max), Physiologia Plantarum, 83 (1991) 463-468. Cataldo, D.A., Garland, T.R., Wildung, E.R., Nickel in plants: I. Uptake Kinetics Using Intact Soybean Seedlings, Plant Physiology, 62 (1978) 563-565. Cempel, M., Nikel, G., Nickel: A Review of Its Sources and Environmental Toxicology, Polish Journal of Environmental Studies, 15 (2006) 375-382. Ceppi, M.G., Oukarroum, A., Çiçek, N., Strasser, R.J., Schansker, G., The IP Amplitude of the Fluorescence Rise OJIP is Sensitiveto Changes in the Photosystem I Content of Leaves: A Studyon Plants Exposed to Magnesium and Sulfate Deficiencies, Drought Stress and Salt Stress, Physiologia Plantarum 144 (2012) 277 – 288. Chalker-Scott, L., Environmental Significance of Anthocyanins in Plant Stress Responses, Photochemistry and Photobiology, 70 (1999) 1-9. Chami, Z., Amer, N., Bitar, L., Cavoski, I., Potential Use of Sorghum bicolor and Carthamus tinctorius in Phytoremediation of Nickel, Lead and Zinc, International Journal Of Environmental Science and Technology, 12 (2015) 3957-3970. Chaney, R.L., Angle, J.S., Broadhurst, C.L., Peters, C.A., Tappero, R.V., Sparks, D.L., Improved Understanding of Hyperaccumulation Yields Commercial Phytoextraction and Phytomining Technologies, Journal of Environmental Quality, 36 (2007) 1429-1443. 83 Chen, C., Huang, D., Liu, J., Functions and Toxicity of Nickel in Plants: Recent Advances and Future Prospects, Clean, 37 (2009) 304-313. Chen, X., Tang, L.J., Sun, Y.N., Qiu, P.H., Liang, G.J., Syntheses, Characterization and Antitumor Activities of Transition Metal Complexes with Isoflavones, Journal of Inorganic Biochemistry, 104 (2010) 379-384. Clemens S., Palmgren M.G. and Krämer U., A Long Way Ahead: Understandfng and Engineering Plant Metal Accumulation, Trends in Plant Science, 7 (2002) 309–315. Clemens, S., Molecular Mechanisms of Plant Metal Tolerance and Homeostasis, Planta, 212 (2001) 475–486. Close, C.D., Beadle, C.L., Xanthophyll-Cycle Dynamics and Rapid Induction of Anthocyanin Synthesis in Eucalyptus nitens Seedlings Transferred to Photoinhibitory Conditions, Journal of Plant Physiology, 162 (2005) 37-46. Cobbet, C. and Goldsbrough, P., Phytochelatins and Metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis, Annual Review Of Plant Biology, 53 (2002) 159-182. Cosge, B., Gurbuz, B., Kiralan, M., Oil Content and Fatty Acid Composition of Some Safflower (Carthamus tinctorius L.) Varieties Sown in Spring and Winter, International Journal of Natural And Engineering Sciences, 1 (2007) 11-15. Çamaş, N., Çırak, C., Esendal, E., Seed Yfeld, Ofl Content and Fatty Acfds Composition of Safflower (Carthamus tinctorius L.) Grown in Northern Turkey Conditions, 2012. Çelik, J., Aksoy, A. ve Leblebici, Z., Metal hyperaccumulating Brassicaceae from the ultramafic area of Yahyalı in Kayseri province, Turkey, Ecological Research, 33 (2018) 705-713. Çiçek, N., Arslan, Ö., Çulha-Erdal, Ş., Eyidoğan, F., Ekmekçi, Y., Are the Photosynthetic Performance Indexes and the Drought Factor Index Satisfactory Selection Criterion for Stress?, Fresenius Environmental Bulletin, 24 (2015) 4190-4198. Çiçek, N., Çakırlar, H., Effects of Salt Stress on Some Physiological and Photosynthetic Parameters at Three Different Temperatures in Six Soya Bean (Glycine max L. Merr.) Cultivars, Journal of Agronomy and Crop Science, 194 (2008) 34-46. 84 Çulha-Erdal, Ş., Aspir Genotiplerinde Kuraklığa Dayanıklılığın Fizyolojik, Biyokimyasal ve Moleküler Düzeyde İncelenmesi, Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, 2017. Dajue, L. and Mündel, H.H. Safflower. Carthamus tinctorius L. Promoting the Conservation and Use of Underutilized and Neglected Crops, 7th Edition, Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic, Rome, 1996. Dorado, M.P., Ballesteros, E., Lopez, F.J. and Mittelbach, M., Optimization of Alkali-Catalyzed Transesterification of Brassica carinata Oil for Biodiesel Production, Energy & Fuels, 18 (2004) 77-83. Douchkov, D., Gryczka, C., Stephan, U.W., Hell, R., Baumlein, H., Ectopic Expression of Nicotianamine Synthase Genes Results in Improved Iron Accumulation and Increased Nickel Tolerance in Transgenic Tobacco, Plant, Cell and Environment, 28 (2005) 365 – 374. Drazkiewicz, M. and Baszynski, T., Interference of Nickel with the Photosynthetic Apparatus of Zea mays, Ecotoxicology and Environmental Safety 73 (2010) 982-986. Drazkiewicz, M., Effect of Nickel on the Photosynthetic Apparatus of Plants. Wiadomosci Botaniczne, 38 (1994) 77–84. Duman, F., Öztürk, F., Nfckel Accumulatfon and Its Effect on Bfomass, Protefn Content and Antioxidative Enzymes in Roots and Leaves of Watercress (Nasturtium officinale R. Br.), Journal of Environmental Sciences, 22 (2010) 526-532. Dushenkov, V., Kapulnik, Y., Phytofiltration of Metals. In: Raskin, I. Ve Ensley, B.D. (Eds.). Phytoremediation of Toxic Metals-Using Plants To Clean-Up The Environment. Wiley, New York, p. 89- 106, 2000. Edelstein M. and Ben-Hur M., Heavy Metals and Metalloids: Sources, Risks and Strategies to Reduce Their Accumulation in Horticultural Crops, Scientia Horticulturae, 234 (2018) 431-444. Eitinger, T., Mandrand-Berthelot, M.A., Nickel Transport Systems in Microorganisms, Archives of Microbiology, 173 (2000) 1-9. Ekmekçi, Y., Tanyolaç, D., Ayhan, B., Effects of Cadmium on Antioxidant Enzyme and Photosynthetic Activities in Leaves of Two Maize Cultivars, Journal of Plant Physiology, 165 (2008) 600-611. 85 El-Sheekh, M.M., Inhibition of Photosystem II in the Green Alga Scenedesmus obliguus by Nickel, Biochemie und Physiologie der Pflanzen, 188 (1993) 363 – 372. EPA, Contaminants and Remedial Options at Select Metals-Contaminated Sites, EPA, 540, R-955, 1995. Esterbauer, H., Cheeseman, K. H., Determination of Aldehydic Lipid Peroxidation Products: Malonaldehyde and 4-Hydroxynonenal, Methods in Enzymology, 186 (1990) 407-421. Farrant, J. M., A Comparison of Mechanisms of Desiccation Tolerance among Three Angiosperm Resurrection Plant Species, Plant Ecology, 151 (2000) 29-39. Finkemeier, I. and Sweetlove, L.J., The Role of Malate in Plant Homeostasis, Reproductive Biology, 1 (2009) 47. Fourati, E., Wali, M., Vogel-Mikus, K., Abdelly, C., Ghnaya, T., Nickel Tolerance, Accumulation and Subcellular Distribution in the Halophytes Sesuvium portulacastrum and cakile maritima, Plant Physiology and Biochemistry, 108 (2016) 295-303. Foyer, C.H, Halliwell, B., The Presence of Glutathione and Glutathione Reductase in Chloroplasts: A Proposed Role in Ascorbic Acid Metabolism, Planta, 133 (1976) 21-25. Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M., Hydrogen Peroxide and Glutathione-Associated Mechanisms of Acclimatory Stress Tolerance and Signalling, Physiologia Plantarum, 100 (1997) 241–254. Fu, C., Olsen, J.W. and Maier, R. J., HypB Protein of Bradyrhizobium japonicum is a Metal-Binding GTPase Capable of Binding 18 Divalent Nickel Ions per Dimmer, Proceedings of the National Academy of Sciences of the United States of America, 92 (1995) 2333 – 2337. Gajewska, E., Skłodowska, M., Effect of Nickel on ROS Content and Antioxidative Enzyme Activities in Wheat Leaves, BioMetals 20 (2007) 27–36. Gajewska, E., Skłodowska, M., Slaba, M. and Mazur, J., Effect of Nickel on Antioxidative Enzyme Activities, Proline and Chlorophyll Contents in Wheat Shoots, Biologia Plantarum, 50 (2006) 653-659. 86 Gaspar, T., Franck, T., Bisbis, B., Kevers, C., Jouve, L., Hausman J.F. and Dommes J., Concepts in Plant Stress Physiology. Application to Plant Tissue Cultures, Plant Growth Regulation, 37 (2002) 263–285. Gecgel, U., Demirci, M., Esendal, E., Tasan, M., Fatty Acid Composition of the Oil from Developing Seeds of Different Varieties of Safflower (Carthamus tinctorius L.), Journal Of The American Oil Chemists' Society, 84 (2007) 47-54. Ghasemi, R., Chavoshi, Z.Z., Boyd, R.S., Rajakaruna, N., A Preliminary Study of the Roleo of Nickel in Enhancing Flowering of the Nickel Hyperaccumulating Plant Alyssum inflatum Nyár. (Brassfcaceae), South African Journal of Botany, 92 (2014) 47-52, Gheibi, M.N., Malakouti, M.J., Kholdebarin B. and Ghanati, F., Significance of Nickel Supply for Growth and Chlorophyll Content of Wheat Supplied with Urea or Ammonium Nitrate, Journal of Plant Nutrition, 32 (2009) 1440-1450 Ghosh, M., Singh, S.P., A Review on Phytoremediatıon of Heavy Metals and Utilizatıon of Its Byproducts, Applied Ecology And Envıronmental Research 3 (2014) 1-18. Goltsev, V.N, Kalaji, H.M., Paunov, M., Baba, W., Horaczek, T., Mojski, T., Kociel, J. and Allakhverdiev, S.I., Variable Chlorophyll Fluorescence and Its Use for Assessing Physiological Condition of Plant Photosynthetic Apparatus, Russian Journal of Plant Physiology, 63 (2016) 869-893. Gould, K., McKelvie, J., Markham, K., Do Anthocyanins Function as Antioxidants in Leaves? Imaging of H2O2 in Red and Green Leaves After Mechanical Injury, Plant, Cell and Environment, 25 (2002) 1261-1269. Gratao, P.L., Polle, A., Lea, P.J. and Azevedo, R.A., Making the Life of Heavy Metal-Stressed Plants a Little Easier, Functional Plant Biology, 32 (2005) 481-494. Guerinot, M.L., The Zip Family of Metal Transporters, Biochimica Et Biophysica Acta, 1465 (2000) 190-198. Guo, Y and Marschner, H., Uptake, distribution, and binding of cadmium and nickel in different plant species, Journal of Plant Nutrition, 18 (1995) 2691-2706. 87 Haber, F., Weiss, J., The Catalytic Decomposition of Hydrogen Peroxide by Ion Salts, Proceedings of the Royal Society, 147 (1934) 332-351. Halfmaa, P., Blande, D, Aarts, M.G.M., Tuomafnen, M., Tervahauta, A., and Kärenlampf, S., Comparatfve Transcrfptome Analysfs of the Metal Hyperaccumulator Noccaea caerulescens, Frontiers in Plant Science, 5 (2014) 213. Hall, J.L., Cellular mechanisms for heavy metal detoxification and tolerance, Journal of Experimental Botany, 53 (2002) 1–11. Halliwell, B. and Gutteridge, J.M.C. The Antioxidants of Human Extracellular Fluids, Archives of Biochemistry and Biophysics, 280 (1998) 1-8. Hamamci, C., Saydut, A., Tonbul, Y., Kaya, C., Kafadar, A., Biodiesel Production via Transesterification from Safflower (Carthamus tinctorius L.) Seed Oil, Part A: Recovery, Utilization, and Environmental Effects, Energy Sources, 33 (2011) 512-520. Hausinger, R.P., Metallocenter Assembly in Nickel-Containing Enzymes, Journal of Biological Inorganic Chemistr, 2 (1997) 279 – 286. He, S., He, Z., Yang, X., Baligar, V.C., Mechanisms of Nickel Uptake and Hyperaccumulation by Plants and Implications for Soil Remediation, Advances in Agronomy, 117 (2012) 118-122. Hoagland, D.R. and Arnon, D.I., The Water-Culture Method for Growing Plants without Soil, California Agricultural Experiment Station, California, 1950. Israra, M., Jewella, A., Kumarb, D., Sahia, S., Interactive Effects of Lead, Copper, Nickel and Zinc on Growth, Metal Uptake and Antioxidative Metabolism of Sesbania drummondii, Journal of Hazardous Materials, 186 (2011) 1520–1526. Jajic, I., Sarna, T. and Strzalka, K., Senescence, Stress, and Reactive Oxygen Species, Plants, 4 (2015) 393-411. Jakkeral, S.A., and Kajjidoni, S.T., Root exudation of organic acids in selected genotypes under phosphorus deficient condition in blackgram (Vigna mungo L. Hepper), Karnataka Journal of Agricultural Sciences, 24 (2011) 316–319. Johnston, J.W., Harding, K., Benson, E.E., Antioxidant Status and Genotypic Tolerance of Ribes in Vitro Cultures to Cryopreservation, Plant Science, 172 (2007) 524-534. 88 Joshi, R., Pareek, A., Singla-Pareek, S.L., Plant Metallothfonefns: classfffcatfon, dfstrfbutfon, functfon, and regulatfon, Plant Metal İnteractfon, Emergfng Remediation Techniques, (ed. Parvaiz, A.), Elsevier, Amsterdam, 239- 253, 2015. Kalaji, H.M., Goltsev, V., Bosa, K., Allakverdiev, S.I., Strasser, R.J., Govindjee, Experimental in Vivo Measurements of Light Emission in Plants: A Perspective Dedicated to David Walker, Photosynthesis Research, 114 (2012) 69-96. Kalefetoǧlu, M.T., Ekmekçf, Y., PS II Photochemfstry and Antfoxfdant Responses of a Chickpea Varfety Exposed to Drought, Zeftschrfft für Naturforschung C: A Journal of Biosciences, 63 (2008) 583-594. Kasprzak, M.M., Erxleben, A. and Ochocki, J., Properties and Applications of Flavonoid Metal Complexes, The Royal Society of Chemistry, 0 (2012) 1- 24. Kautsky H, Hfrsch A. Neue Versuche zur Kohlensäureassfmflatfon. Naturwissenschaften 19 (1931) 964-974. Khaliq, A., Ali, S., Hameed, A., Farooq, M.A., Farid, M., Shakoor, M.B., Mahmood, K., Ishaque, W., Rizwan, M., Silicon Alleviates Nickel Toxicity in Cotton Seedlings Through Enhancing Growth, Photosynthesis, and Suppressing Ni Uptake and Oxidative Stress, Archives of Agronomy and Soil Science, 62 (2016) 633–647. Khan, M.I.R., Khan, N.A., Masood, A., Per, T.S., Asgher, M., Hydrogen Peroxide Alleviates Nickel-Inhibited Photosynthetic Responses Through Increase in Use Efficiency of Nitrogen and Sulfur, and Glutathione Production in Mustard, Frontiers in Plant Science, 7 (2016) 1-20. Kotapati, K.V., Palaka, B.K., Ampasala, D.R., Alleviation of Nickel Toxicity in Finger Millet (Eleusine coracana L.) Germinating Seedlings by Exogenous application of Salicylic Acid and Nitric Oxide, The Crop Journal, 5 (2017) 240-250. Koti, R. V., Prakash, S., Kiran, K., Ravikumar, T., An Investigation on the Performance and Emission Characteristics of a Direct Injection Diesel Engine Using Safflower Oil and Milk Scum Oil as a Biodiesel, International Refereed Journal Of Engineering And Science, 3, (2014) 103-112. 89 Koutroubas, S.D., Papakosta, D.K., Doitsinis, A., Phenotypic Variation in Physiological Determinants of Yield in Spring Sown Safflower Under Mediterranean Conditions, Field Crops Research, 112 (2009) 199-204. Kozlow, M.V., Pollution Resistance of Mountain Birch, Betula pubescens subsp. szerepanovii, Near the Copper-Nickel Smelter: Natural Selection or Phenotypic Acclimation?, Chemosphere, 59 (2005) 189–197. Krüpa, Z. and Baszynski, T., Some Aspects of Heavy Metals Toxicity towards Photosynthetic Apparatus – Direct and Indirect Effects on Light and Dark Reactions, Acta Physiologiae Plantarum, 17 (1995) 177–190. Krüpa, Z., Sfedleka, A., Maksymfec, W., Baszynskf, T., In Vfvo Response of Photosynthetic Apparatus of Phaseolus vulgaris L. to Nickel Toxicity, Journal of Plant Physiology, 142 (1993) 664 – 668. Kumar, H., Sharma, D., Kumar, V., Nickel-Induced Oxidative Stress and Role of Antioxidant Defence in Barley Roots and Leaves, International Journal of Environmental Biology, 2 (2012) 121-128. Küpper, H., Mijovilovich, H., Meyer-Klaucke, M, Kroneck, P.M.H., Tissue and Age Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy, Plant Physiology, 134 (2004) 748-757. Levitt J., Responses of Plants to Environmental Stresses, London Academic Press, New York, 1972. Lichtenthaler, H.K., Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes, Methods in enzymology, 148 (1987) 350-382. Llamas, A., Ullrich, C. I., Sanz, A., Ni+2 toxicity in rice: Effect on membrane functionality and plant water content, Plant Physiology and Biochemistry 46 (2008) 905-910. Llugany, M., Miralles, R., Corrales, I., Barcelo, J., Poschenrieder, C., Cynara cardunculus a Potentially Useful Plant for Remediation of Soils Polluted with Cadmium or Arsenic, Journal of Geochemical Exploration, 123 (2012) 122-127. Luo, Y. and Rimmer, D.L., Zinc-Copper in Teraction Affecting Plant Growth on a Metal -contaminated soil, Environmental Pollution, 88 (1995) 79 – 83. 90 Maestri, E., Marmiroli, M., Visioli, G. and Marmiroli N., Metal Tolerance and Hyperaccumulation: Costs and Trade-Offs Between Traits and Environment, Environmental and Experimental Botany 68 (2010) 1-13. Manara, A., Plant Responses to Heavy Metal Toxicity, Plants and Heavy Metals, Springer Briefs in Biometals, Verona, Chapter 2, 2012. Mancinelli, A.L., Yang, C.P.H., Lindquist, P., Anderson, O., Rabino, I., Photocontrol of Anthocyanin Synthesis: III. The Action of Streptomycin on the Synthesis of Chlorophyll and Anthocyanin, Plant Physiology, 55 (1975) 251-257. Martens S.N. and Boyd R.S., The Defensive Role of Ni Hyperaccumulation by Plants: A Field Experiment, American Journal Of Botany, 89 (2002) 998– 1003. Massey, L., Dietary Influences on Urinary Oxalate and Risk of Kidney Stones, Frontiers in Bioscience, 8 (2003) 584-594. Matthaus, B., Özcan, M., Al Juhafmf, F., Fatty Acfd Composftfon And Tocopherol Profiles of Safflower (Carthamus tinctorius L.) Seed Oils, Natural Product Research, 29 (2015) 193-196. Melchiorre, M., Quero, G.E., Parola, R., Racca, R., Trippi, V.S., Lascano, R., Physiological Characterization of Four Model Lotus Diploid Genotypes: L. japonicus (Mg20 and Gifu), L. filicaulis, and L. burttii under Salt Stress, Plant Science, 177 (2009) 618-628. Merlot, S., Hannibal, L., Martins, S., Martinelli, L., Amir, H., Lebrun, M., Thomine, S., The Metal Transporter PgIREG1 from the Hyperaccumulator Psychotria gabriellae is a Candidate Gene for Nickel Tolerance and Accumulation, Journal Of Experimental Botany, 65 (2014) 1551-1564. Meshram, P. D., Puri, R. G., and Patil, H. V., Epoxidation of Wild Safflower (Carthamus oxyacantha) Oil with Peroxy Acid in Presence of Strongly Acidic Cation Exchange Resin IR-122 Ascatalyst, International Journal Of Chem Tech Research, 3 (2011) 1152-1163. Mirecki, R.M. and Teramura, A.H., Effects of Ultraviolet-B Irradiance on Soybean V. The Dependence of Plant Sensitivity on the Photosynthetic Photon Flux Density During and After Leaf Expansion, Plant physiology, 74 (1984) 475- 480. 91 Mishra, S. and Dubey, R.S., Heavy Metal Uptake and Detoxification Mechanisms in Plants, International Journal of Agricultural Research, 1 (2006) 122-141. Mittler, R. and Poulos, T., Antioxidants and Reactive Oxygen Species in Plants, Smirnoff, N. (Ed.), Blackwell Publishing, Oxford p. 87-100, 2007. Mittler, R. and Poulos, T., Ascorbate Peroxidase, Antioxidants and Reactive Oxygen Species in Plants, Smirnoff, N. (ed.), Blackwell Publishing, Oxford, 87-100, 2005. Mittler, R., Oxidative Stress, Antioxidants and Stress Tolerance, Trends in Plant Science, 7 (2002) 405-410. Mittler, R., Poulos, T., Ascorbate Peroxidase, Antioxidants and Reactive Oxygen Species in Plants, (ed. N Smirnoff), Blackwell Publishing, Oxford, 87-100, 2005. Mittler, R., ROS are Good, Trends in Plant Science, Elseiver, Mountain View, 22, 2017. Mohanty, N., Vaas, I., and Demeter, S., Impairment of Photosystem 2 Activity at the Level of Secondary Quinone Electron Acceptor in Chloroplasts Treated with Cobalt, Nickel and Zinc Ions, Physiologia Plantarum, 76 (1989) 386–390. Nagajyoti, P.C., Lee, K.D. and Sreekanth, T., Heavy Metals, Occurrence and Toxicity for Plants: A Review, Environmental Chemistry Letters, 8 (2010) 199-216. Nedelkoska, T.V. and Doran, P.M., Characteristics of Heavy Metal Uptake by Plant Species with Potential for Phytoremediation and Phytomining, Minerals Engineering, 13 (2000)549-561. Neill, S.O., Gould, K.S., Anthocyanins in Leaves: Light Attenuators or Antioxidants?, Functional Plant Biology, 30 (2003) 865 – 873. Newman L.A. ve Reynolds C.M., Phytodegradation of Organic Compounds, Current Opinion in Biotechnology, 15 (2004) 225-230. Nishida, S., Aisu, A. and Mizuno, T., Induction of IRT1 by the Nickel-Induced Iron-Deficient Response in Arabidopsis, Plant Signaling Behavior, 7 (2012) 329–331. Oelke, E., Oplinger, E., Teynor, T., Putnam, D., Doll, J., Kelling, K., Durgan, B., Noetzel, D., Safflower, Alternative Field Crops Manual, 1992. 92 Oller, A.R., Costa, M., Oberdörster, G., Carcfnogenfcfty Assessmentof Selected Nickel Compounds, Toxicology and Applied Pharmacology, 143 (1997) 152 –166. Oukarroum, A., Madidi S.E., Schansker, G. and Strasser, R.J., Probing the Responses of Barley Cultivars (Hordeum vulgare L.) by Chlorophyll a Fluorescence OLKJIP Under Drought Stress and Re-Watering, Environmental and Experimental Botany, 60 (2007) 438-446. Oukarroum, A., Schansker, G. and Strasser, R.J., Drought Stress Effects on Photosystem I Content and Photosystem II Thermotolerance Analyzed Using Chl A Fluorescence Kinetics in Barley Varieties Differing in Their Drought Tolerance, Physiologia Plantarum, 137 (2009) 188–199. Oukarrouma, A., Lebrihia, A., Gharousb, M.E., Goltsevc, V. and Strasser, R.J., Desiccation-induced Changes of Photosynthetic Transport in Parmelinatiliacea (Hoffm.) Ach. Analysed by Simultaneous Measurements of The Kinetics of Prompt Fluorescence, Delayed Fluorescence and Modulated nm Reflection, Journal of Luminescence, 198 (2018) 302–308. Ouzounidou, G., Moustakas, M., Symeonidis, L., Karataglis, S., Response of Wheat Seedlings to Ni Stress: Effects of Supplemental Calcium. Archives of Environmental Contamination and Toxicology, 50 (2006) 346–352. Öz. M.T., Ö. Turan, Ö., Kayıhan, C., Eyı̇doğan, F., Ekmekçf, Y., YüCel, M. and Öktem, H.A., Evaluatfon of Photosynthetfc Performance of Wheat Cultivars Exposed to Boron Toxicity by the JIP Fluorescence Test, Photosynthetica 52 (2004) 555-563. Pace, M., Israelsen, C., Creech, E. and Allen, N., Growing Safflower in Utah, Extenion, 2015. Padmavathiamma, P.K., Loretta, Y.L., Phytoremediation Technology: Hyperaccumulation Metals in Plants, Water Air Soil Pollution, 184 (2007) 105-126. Pandey, N. Sharma, C.P., Effect of Heavy Metals Co2+, Ni2+ and Cd2+ on Growth and Metabolism of Cabbage. Plant Science, 163 (2002) 753-758. Pari, L. and Amudha, K., Effects of Naringin on Physical Fatigue and Serum MMP-9 Concentration in Female Rats, European Journal of Pharmacology, 650 (2011) 364-370. 93 Pearl, S. A., Bowers, J. E., Reyes-Chin-Wo, S., Michelmore, R. W., Burke, J. M., Genetic Analysis of Safflower Domestication, Bmc Plant Biology, 14 (2014) 43. Persans, M.W., Nieman, K., Salt, D.E., Functional Activity and Role of Cation- Efflux Family Members in Ni Hyperaccumulation in Thlaspi goesingense, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001) 9995 – 10000. Petrucci, R.H. and Harwood, W.S., General Chemistry: Principles and Modern Aplications, 6th Edition, Macmillan Publising Company, New York, 1993. Peuke, A.D., Rennenberg, H., Molecular Biology, Requirements for Application, Environmental Protection, Public Attention and Feasibility, European Molecular Biology Organization, 6 (2005) 497-501. Pietrini, F., Iori, V., Cheremisina, A., Shevyakova, N.I., Radyukina, N., Kuznetsov, V.V., Zacchini, M., Evaluation of Nickel Tolerance in Amaranthus paniculatus L. Plants by Measuring Photosynthesis, Oxidative Status, Antioxidative Response and Metal-Binding Molecule Content, Environmental Science and Pollution Research, 22 (2015) 482- 494. Radic, S., Radic-Stojkovic, M. and Pevalek-Kozlin, B., Influence of NaCl and Mannitol on Peroxidase Activity and Lipid Peroxidation in Centaurea ragusina L. roots and shoots, Journal of Plant Physiology 163 (2006) 1284—1292. Rao, M. V., Hale, B. A., Ormrod, D. P., Amelioration of Ozone-Induced Oxidative Damage in Wheat Plants Grown under High Carbon Dioxide (Role of Antioxidant Enzymes), Plant Physiology, 109 (1995) 421-432. Rascio, N. and Navari-Izzo, F. , Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them so Interesting?, Plant Science, 180 (2011) 169–181. Redmann, R., Haraldson, J., and Gusta, L., Leakage of UV-Absorbing Substances as a Measure of Salt Injury in Leaf Tissue of Woody Species, Physiologia Plantarum, 67 (1986) 87-91. Ripoll, J., Bertin, N., Bidel, L. P., and Urban, L. A., User’s View of the Parameters Derived From the Induction Curves of Maximal Chlorophyll a 94 Fluorescence: Perspectives for Analyzing Stress, Frontiers in Plant Science, 7 (2016) 1679. Rizwan, M., Imtiaz, M., Dai, Z., Mehmood, S., Adeel, M., Liu, J., Tu, S., Nickel Stressed Responses of Rice in Ni Subcellular Distribution, Antioxidant Production, and Osmolyte Accumulation, Environmental Science and Pollution Research, 20587 (2017) 20598. Rizzi L., Petruzzelli, G., Poggio G., Guidi, V.G., Soil Physical Changes and Plant Availability of Zn and Pb in a Treatability Test of Phytostabilization, Chemosphere, 57 (2004) 1039-1046 Robinson, B. H., Brooks, R. R., Gregg, P. E. H., Kirkman, J. H. the Nickel Phytoextraction Potential of Some Ultramafic Soils as Determined by Sequential Extraction, Geoderma, 87 (1999) 293-304. Roccotiello, E., Serrano, H.C., Mariotti, M.G., Branquinho, C., The Impact of Ni on the Physiology of a Mediterranean Ni-Hyperaccumulating Plant, Environmental Science and Pollution Research, 23 (2016) 12414-12422. Rubio, M.I., Escrig, I., Martinez-Cortina, C., Lopez-Benet, F.J., Sanz, A., Cadmium and Nickel Accumulation in Rice Plants. Effects On Mineral Nutrition and Possible Interactions of Abscisic and Gibberellic Acids, Plant Growth Regulation 14 (1994) 151-157. Sachan, P. and Lal, N., An Overview of Nickel (Ni2+) Essentiality, Toxicity and Tolerance Strategies in Plants, Asian Journal of Biology, 2 (2017) 1-15. Sachan, P. and Lal, N., Molecular Mechanisms of Nickel (Ni2+) Homeostasis in Plants: Uptake, Tolerance and Hyperaccumulation, Khan, M.M.A.A., Abid, M., Vermaand, D., Maheshwari, R.K. (Eds), Discovery Publishing House Pvt. Ltd., New Delhi, 178-196, 2019. Sagner, S., Kneer, R., Wanner, G., Cosson, J.P., Deus-Neumann, B., Zenk, M.H., Hyperaccumulation, Complexation and Distribution of Nickel in Sebertia acuminate, Phytochemistry, 47 (1998) 339 – 347. Sairam, K., Deshmukh, P.S. and Shukla, D.S., Tolerance of Drought and Temperature Stress in Relation to Increased Antioxidant Enzyme Activity in Wheat, Journal of Agronomy and Crop Science, 178 (1997) 171-177. Sakihama, Y., Cohen, M.F., Grace, S.C., Yamasaki, H., Plant Phenolic Antioxidant and Prooxidant Activities: Phenolics-Induced Oxidative Damage Mediated by Metals in Plants, Toxicology, 177 (2002) 67-80. 95 Samantaray, S., Rout, G.R., and Das, P., Tolerance of Rice to Nickel in Nutrient Solution, Biologia Plantarum, 40 (1997) 295-298. Schor-Fumbarov, T., Goldsbrough, P.B., Adam, Z., Tel-Or, E., Characterization and Expression of a Metallothionein Gene in the Aquatic Fern Azolla Filiculoides Under Heavy Metal Stress, Planta, 223 (2005) 69 – 76. Seregin, I.V and Ivanov, V.B., Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants, Russian Journal of Plant Physiology, 48 (2001) 523-544. Seregin, I.V., Kozhevnikova A.D., Kazyumina M. and Ivanov, B., Nickel Toxicity and Distribution in Maize Roots, Russian Journal of Plant Physiology, 50 (2013) 711-717. Seregin, I.V., Kozhevnikova, A., Kazyumina, A.M. and Ivanov, V.B., Nickel Toxicity and Distribution in Maize Roots, Russian Journal of Plant Physiology, 50 (2003) 711-717. Seregin, I.V., Kozhevnikova, A.D., Physiological Role Of Nickel and Its Toxic Effects on Higher Plants, Russian Journal of Plant Physiology, 53 (2006) 257-277. Sgherry C.I.M., Pinzino C. ve Navari-Izzo F., Sunflower Seedlings Subjected to Increasing Water Stress by Water Deficit: Changes in O2-Production Related to The Composition of Thylakoid Membranes. Physiologia Plantarum, 96 (1996) 446-452. Sharma, S.S. and Dietz, K.J., The Significance of Amino Acids and Amino Acid Derived Molecules in Plant Responses and Adaptation to Heavy Metal Stress, Journal of Experimental Botany, 57 (2006) 711-726. Sheoran, I.S., Singal, H.R. and Singh, R., Effects of Cadmium and Nickel on Photosynthesis and the Enzymes of the Photosynthetic Carbon Reduction Cycle in Pigeon Pea (Cajanus cajan L.), Photosynthesis Research, 23 (1990) 345 – 351. Shi, G., Liu, C., Cai, Q., Liu, Q., and Hou, C., Cadmium Accumulation and Tolerance of Two Safflower Cultivars in Relation to Photosynthesis and Antioxidative Enzymes, Bulletin of Environmental Contamination and Toxicology, 85 (2010) 256–263. 96 Siddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O., Interactive Effect of Calcium and Gibberellin on Nickel Tolerance in Relation to Antioxidant Systems in Triticum aestivum L. Protoplasma 248 (2011) 503–511. Siedlecka, A., Tukendorf, A., Skorzynska-Polit, E., Maksymiec, W., Wojcik, M., Baszynski, T. and Krupa, Z., Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and Poaceae; other than Brassicaceae), Prasad, M.N.V. (Ed.), Metals in the Environment. Analysis by Biodiversity, New York, Basel: Marcel Dekker, p. 171-217, 2001. Singh G, Agnihotri RK, Reshma RS, Ahmad M Effect of Lead and Nickel Toxicity on Chlorophyll and Proline Content of Urd (Vigna mungo L.) Seedlings. International Journal of Plant Physiology and Biochemistry, 4 (2012) 136– 141. Singh, D. and Chauhan, S.K., Organic Acids of Crop Plants in Aluminium Detoxification, Current Science, 100 (2011) 1109–1515. Singh, D.P., Khare, P. and Singh, P.S., Effect of Ni2+, Hg2+ and Cu2+ on Growth, Oxygen Evolution and Photosynthetic Electron Transport in Cylindrospermum IU 942, Journal of Plant Physiology, 134 (1989) 406 – 412. Sirhindi, G., Mir, M.A., Abd-Allah, E.F., Ahmad, P., Gucel, S., Jasmonic Acid Modulates the Physio-Biochemical Attributes, Antioxidant Enzyme Activity, and Gene Expression in Glycine max Under Nickel Toxicity, Frontiers in Plant Science, 7 (2016) 591. Smirnoff, N., The Role of Active Oxygen in the Response of Plants to Water Deficit and Desiccation, New Phytologist,125 (1993) 27-58. Smith, V. H., Jimmerson, J., Safflower, 2005. Sperdouli, I., Moustakas, M., Interaction of Proline, Sugars, and Anthocyanins During Photosynthetic Acclimation of Arabidopsis thaliana to Drought Stress, Journal of Plant Physiology, 169 (2012) 577–585. Sreekanth, T., Nagajyothi, P.C., Lee, K.D., Prasad, T.N.V.K.V, Occurrence, Physiological Responses and Toxicity of Nickel in Plants, International Journal of Environmental Science and Technology 10 (2013) 1129-1140. 97 Sitko, K., Rusinowski, S., Kalaji, H.M., Szopiński, M., Małkowski, E., Photosynthetic Efficiency as Bioindicator of Environmental Pressure in A. halleri, Plant Physiology, 175 (2017) 290-302. Stadtman E.R. and Barlett B.S., Free Radical-Mediated Modification of Proteins, Wallace K.B., (Ed.) Free Radical Toxicology, Press Boca Raton, Miami, 1997. Stirbet, A., Lazar, D., Kromdijk, J., Govindjee, Chlorophyll a Fluorescence Induction: Can Just a One-Second Measurement Be Used to Quantify Abiotic Stress Responses?, Photosynthetica, 56 (2018) 86-104. Strass A. and Horst W.J., Effect of Aluminum on Membrane Properties of Soybean (Glycine max) Cells in Suspension Culture, Plant and Soil, 171 (1995) 113–118. Strasser, B. J., Strasser, R. J., Measuring Fast Fluorescence Transients to Address Environmental Questions: The JIP-Test, Photosynthesis: from light to biosphere, Mathis, P. (Ed.), The Kluwer Academic, Dordrecht, 977- 980, 1995. Strasser, R. J., Srivastava, A., Tsimilli-Michael, M., The Fluorescence Transient as a Tool to Characterize and Screen Photosynthetic Samples, Probing Photosynthesis: Mechanisms, Regulation and Adaptation, Pathre Y.M., Mahanty, P. (Eds.), Taylor and Francis, London, 445-483, 2000. Syam, N., Wardiyati, T., Maghfoer, M.D., Handayanto, E., Ibrahim, B., Muchdar, A., Effect of Accumulator Plants on Growth and Nickel Accumulation of Soybean on Metal-Contaminated Soil, Agriculture and Agricultural Science Procedia, 9 (2016) 13-19. Syama, N., Wardiyatib, T., Maghfoerb, M. D., Handayantoc, E., Ibrahima, B., Muchdar, A., Effect of Accumulator Plants on Growth and Nickel Accumulation of Soybean on Metal-Contaminated Soil, Agriculture and Agricultural Science Procedia, 9 (2016) 13-19. Symonowicz, M. and Kolanek, M., Flavonoids and their Properties to form Chelate Complexes, Biotechnology and Food Sciences, 76 (2012) 35-41. Pandolfini, T., Gabbrielli, R., Comparini, C., Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L, Plant Cell Environ. 15 (1992) 719-725. Strasser, R. J., Tsimilli-Michael, M., Srivastava, A., Analysis of the Chlorophyll a Fluorescence Transient, Chlorophyll a Fluorescence, Govindjee, P.C.G. (eds), Springer, Netherlands, 321-362, 2004. 98 Theriault, G. and Nkongolo, K., Nickel and Copper Toxicity and Plant Response Mechanisms in White Birch (Betula papyrifera), Bulletin of Environmental Contamination and Toxicology, 97 (2016) 171-176. Theriault, G., Michael, P., Nkongolo, K., Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera), Plos One, 11 (2016) 1-21. Tolra, R., Barcelo, J. and Poschenrieder, C., Constitutive and Aluminium- Induced Patterns of Phenolic Compounds in Two Maize Varieties Differing in Aluminium Tolerance, Journal of Inorganic Biochemistry, 103 (2009) 1486-1490. Tóth, S. Z., Schansker, G., Kissimon, J., Kovács, L., Strasser, R. J., Biophysical Studies of Photosystem II-Related Recovery Processes after a Heat Pulse in Barley Seedlings (Hordeum vulgare L.), Journal of Plant Physiology, 162, (2005) 181-194. Trejo-Tellez, L.I., Gomez-Merino, F.C., and Schmitt, J.M., Citric Acid: Biosynthesis, Properties and Applications on Higher plants, in Citric Acid, Vargas, D.A. and Medina, J.V. (Eds), New York, NY: Nova Science Publishers, Inc., 43–70, 2012. Tripathi, V., Edrisi, S.A., Abhilashn, P.C., Towards The Coupling of Phytoremediation with Bioenergy Production, Renewable and Sustainable Energy Reviews, 57 (2016) 1386-1389. Van der Ent, A., Baker, A.J.M., Reeves, R.D., Pollard, A.J. ve Schat, H., Hyperaccumulators of metal and metalloid trace elements: Facts and fiction, Plant and Soil, 362 (2013) 319-334. Veeranjaneyulu, K. and Das, V.S.R., Intrachloroplast Localization of Zn and Ni in a Zn-Tolerant Plant, Ocimum basilicum Benth, Journal of Experimental Botany, 1982, 33 (1982) 1161–1165. Velasco, L., Pérez-Vfch, B., Fernández-Martínez, J., Identfffcatfon and Genetfc Characterization of a Safflower Mutant with a Modified Tocopherol Profile, Plant Breeding, 124 (2005) 459-463. Tsimilli-Michael, M., Strasser, R. J., In Vivo Assessment of Stress Impact on Plant’s Vitality: Applications in Detecting and Evaluating the Beneficial Role of Mycorrhization on Host Plants, Mycorrhiza, Varma, A. (Ed), Springer, Berlin Heidelberg, 679-703, 2008. 99 Visioli, G. and Marmiroli, N., The Proteomics of Heavy Metal Hyperaccumulation by Plants, Journal of Proteomıcs, 79 (2013) 133–145. Wang, S. Y., Jiao, H. J., Faust, M., Changes in Ascorbate, Glutathione, and Related Enzyme Activities During Thidiazuron-Induced Bud Break of Apple, Physiologia Plantarum, 82 (1991) 231-236. Wang, W., Vinocur, B, Shoseyov, O. and Altman A., Role of Plant Heat-Shock Proteins and Molecular Chaperones in the Abiotic Stress Response, Trends In Plant Science, 9 (2004) 244-245. Watt, R.K., Ludden, P.W., Theidentification, Purification, Andchar Acterization of Cooj. A Nickel-Binding Protein That is Co-Regulated with the Ni- Containing Co Dehydrogenase from Rhodospirillum Rubrum, The Journal of Biological Chemistry, 273 (1998) 10019-10025. Wisniewski, L., Dickinson, N.M., Toxicity of Copper to Quercus robur (English Oak) seedlings from a Copper-Rich Soil, Environmental and Experimental Botany, 50 (2003) 99 – 107. Wojcik, M, Gonnellix, C., Selvix, F., Dresler, S., Rostanski, A. and Vangronsveld, J., Metallophytes of Serpentine and Calamine Soilse Their Unique Ecophysiology and Potential for Phytoremediation, Advances in Botanical Research, 83 (2017) 1-34. Wolfram, L., Friedrich, B., Eitinger, T., The Alcaligenes Eutrophus Protein Hoxn Mediates, Nickel Transport in Escherichia coli, Journal of Bacteriology, 177 (1995) 1840 – 1843. Wycisk K., Kim E., Schroeder J. and Kramer U., Enhancing the First Enzymatic Step in the Histidine Biosynthesis Pathway Increases the Free Histidine Pool and Nickel Tolerance in Arabidopsis thaliana, FEBS Letters, 578 (2004) 128-134. Yadav N. and Sharma, S., An Account of Nickel Requirement, Toxicity and Oxidative Stress in Plants, Biological Forum, 8 (2016) 414-419. Yaman, H., Tarıkyahya-Hacıoğlu, B., Arslan, Y., Subaşı, İ., Molecular Characterization of the Wild Relatives Of Safflower (Carthamus tinctorius L.) in Turkey as Revealed by Issrs, Genetic Resources and Crop Evolution, 61 (2014) 595-602. 100 Yao, X. and Liu, Q., Changes in Photosynthesis and Antioxidant Defenses of Picea asperata Seedlings to Enhanced Ultraviolet-B and To Nitrogen Supply. Physiogia Plantarum, 129 (2007) 364–374. Yusuf, M., Fariduddin, Q., Hayat, S. and Ahmad, A., Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants, Bulletin of Environmental Contamination and Toxicology, 86 (2011) 1-17. Zacchini, M., Pietrini, F., Mugnozza, G.S., Iori, V., Pietrosanti, L., and Massacci, A., Metal Tolerance, Accumulation and Translocation in Poplar and Willow Clones Treated with Cadmium in Hydroponics, Water Air and Soil Pollution, 197 (2009) 23–34. Zoeller M., Stingl N., Krischke M., Fekete A., Waller F., Berger S. and Mueller M.J., Lipid Profiling of the Arabidopsis hypersensitive Response Reveals Specific Lipid Peroxidation and Fragmentation Processes: Bio-Genesis of Pimelic and Azelaic Acid, Plant Physiology, 160 (2012) 365–378. Zouboulis, A.I., Katsoyiannis, I.A., Recent Advances in the Bioremediation of Arsenic-Contaminated Groundwater, Environment International, 31 (2005) 213-219.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/5684
dc.description.abstractNickel (Ni+2) is a micronutrient that is essential for plant growth and development, and its high concentrations have highly toxic effects. In this study, the effects of nickel on the growth and photochemical activities of domestic (Carthamus tinctorius L., Olas) and wild (Carthamus oxyacantha M. Bieb) safflower genotypes and the potential of accumulation with the nickel tolerance of the genotypes were aimed. 14 day-old seedlings grown in climate cabinet with controlled conditions (16/8 hour photoperiod, 180-200 µmol. m-2s-1 light intensity, 23-25 ± 1 °C day/night temperature, 50 ± 5% humidity) were exposed to different nickel concentrations [control, 0.5mM, 0.75mM and 1.0mM (NiCl2.6H2O)] for 7 days. In both domestic and wild genotypes, the biomass of root and shoot decreased depending on nickel accumulation, and this decrease was found to be higher in the roots. Furthermore, both genotypes translocated the nickel which uptaken by their roots to the leaves by approx. 8-18%. Although a small amount of nickel was transferred to the leaves, photosynthetic apparatus were adversely affected. Toxic nickel levels caused the changes in the specific (ABS/RC, TRO/RC, ETO/RC, REO/RC and DIO/RC) and phenomenological energy fluxes (ABS/CS, TRO/CSO, ETO/CSO and DIO/CSO), quantum yields (Po and DIo), the efficiencies of PSII’s donor (VK/VJ) and PSI’s acceptor (ΔVIP) sides in the thylakoid membranes. These changes led to a significant decrease in the photosynthetic performance (PIABS ve PITOP) of the genotypes. However these negative effects of nickel were not at a level to destroy the functionality of the photosystems, even though it affected membrane integrity and the amount of pigments in the antenna and active reaction centers. While superoxide (O2- ) and hydrogen peroxide (H2O2) which are oxidative damage products caused by toxic nickel levels were detoxified by high activity of superoxide dismutase (SOD) and guaiacol peroxidase (POD) enzymes in the roots of genotypes. In addition to these enzymes, ascorbate peroxidase (APX) and glutathion reductase (GR) activities and the increase in the amount of anthocyanins and flavonoids being accessory pigments were determined to have impact on the defence system in the leaves. Wild and domestic genotypes showed similar tolerance behavior against to nickel toxicity. It may be possible to take advantage of the potential usage of the safflower plants for remediation (phytostabilization) in soils contaminated with nickel due to accumulation in large amount of nickel in the roots of genotypes.tr_TR
dc.description.tableofcontentsÖZET………………………………………………………………………………..………i ABSTRACT………………………………………………………………………….…….iii TEŞEKKÜR………………………………..………………………………………………v İÇİNDEKİLER…………………………………………………..…………………………vi ÇİZELGELER……………………………………………………….…………………….ix ŞEKİLLER…..………………………………………………………….………………….x SİMGELER VE KISALTMALAR……………………………………………………….xiii 1.GİRİŞ 1 2. GENEL BİLGİLER 6 2.1. Aspir (Carthamus tinctorius L.) Bitkisi 6 2.2. Ağır Metal Stresi 8 2.3. Ağır Metal Olarak Nikel 8 2.4. Nikelin Bitki Bünyesine Alımı 10 2.5. Artan Nikel Düzeylerinin Bitkilerdeki Etkileri 12 2.5.1. Morfolojik Değişimler 12 2.5.2. Metabolik Değişimler 13 2.5.3. Oksidatif Değişimler 17 2.6. Bitkilerin Nikel Zararlarına Karşı Oluşturduğu Yanıtlar 19 2.6.1. Sakınma (Kaçınma) 19 2.6.2. Tolerans (Dayanım) 20 2.6.2.1. Ligandlara Bağlanma 20 2.6.2.1.2. Metalotiyoninler 21 2.6.2.1.3. Bazı Organik Asitler (Tiyol Olmayan Metal Şelatörler) 21 2.6.2.2. Antioksidan Savunma Sistemi 22 2.7. Metal Kirliğinin Giderilme Yolları: Fitoremediasyon 25 2.7.1. Fitoekstraksiyon 26 2.7.2. Rizofiltrasyon 26 2.7.3. Fitovolatilizasyon 27 2.7.4. Fitodegradasyon 28 2.7.5. Fitostabilizasyon 28 2.8. Ağır Metal Biriktirebilen Bitkiler 28 2.8.1. Metallofitler 28 2.8.2. Hiperakümülatörler 29 2.9. Fitoremediasyon Yönteminin Avantaj ve Dezavantajları 29 3. MATERYAL VE YÖNTEM 32 3.1. Bitki Materyali 32 3.1.1. Bitki Yetiştirme Yöntemi 32 3.2. Ölçüm ve Analizler 33 3.2.1. Morfolojik Ölçümler 33 3.2.1.1. Kök ve Sürgün Uzunlukları ile Yaprak Sayısı Ölçümleri 34 3.2.1.2. Kök ve Sürgünlerin Yaş ile Kuru Ağırlık Ölçümü 34 3.2.2. Fizyolojik ve Biyokimyasal Analizler 35 3.2.2.1. Nikel Birikiminin Belirlenmesi 35 3.2.2.2. Polifazik Klorofil a Fluoresans Kinetikleri Ölçümü 35 3.2.2.3. Fotosentetik Pigment Miktarının Belirlenmesi 38 3.2.2.4. Oransal Su İçeriğinin Belirlenmesi 38 3.2.2.5. İyon Sızıntısı Oranının Belirlenmesi 39 3.2.2.6. Hidrojen peroksit (H2O2) Miktarının Belirlenmesi 39 3.2.2.7. Antosiyanin ve Flavonoid Miktarının Belirlenmesi 39 3.2.2.8. Antioksidan Enzim Aktivitelerinin Belirlenmesi 40 3.2.2.8.1. Protein Miktarının Belirlenmesi 40 3.2.2.8.2. Toplam Süperoksit Dismutaz (SOD) Aktivitesinin Belirlenmesi 40 3.2.2.8.3. Toplam Peroksidaz (POD) Aktivitesinin Belirlenmesi 41 3.2.2.8.4. Toplam Glutatyon Redüktaz (GR) Aktivitesinin Belirlenmesi 41 3.2.2.8.4. Toplam Askorbat Peroksidaz (APX) Aktivitesinin Belirlenmesi. 3.2.3. İstatistiksel Analizler 42 4. BULGULAR 43 4.1. Aspir Genotiplerde Artan Nikel Düzeylerinin Morfolojik Değişimler Üzerine Etkileri 43 4.1.1. Kök ve Sürgün Uzamasındaki Değişimler 43 4.1.2. Kök ve Sürgün Yaş Ağırlıklarındaki Değişimler 43 4.1.3. Kök ve Sürgün Kuru Ağırlıklarındaki Değişimler 46 4.1.4. Nikelin Yaprak Sayısı Üzerine Etkisi 48 4.2. Aspir Genotiplerde Artan Nikel Düzeylerinin Fizyolojik ve Biyokimyasal Değişimler Üzerine Etkileri 49 4.2.1. Aspir Genotiplerin Farklı Dokularındaki Nikel Akümülasyonu 49 4.2.2. Fotokimyasal Aktivitedeki Değişimler 52 4.2.3. Fotosentetik Pigment İçeriğindeki Değişimler 57 4.2.3.1.Klorofil a (kl a) miktarı 57 4.2.3.2. Klorofil b (kl b) miktarı 58 4.2.3.3. Toplam klorofil (kl a+b) miktarı 58 4.2.3.4. Toplam karotenoid (x+c) miktarı 58 4.2.4. Oransal Su İçeriğindeki Değişimler 59 4.2.5. İyon Sızıntısı Miktarındaki Değişimler 61 4.2.6. Hidrojen Peroksit (H2O2) Miktarındaki Değişimler 61 4.3. Aspir Genotiplerinde Artan Nikel Düzeylerinin Savunma Sistemleri Üzerine Etkisi 62 4.3.1. Antosiyanin ve Flavonoid Pigment İçeriklerindeki Değişimler 62 4.3.2. Enzimatik Antioksidan Enzim Aktivitelerindeki Değişimler 63 4.3.2.1. Süperoksit Dismutaz (SOD) Aktivitesi 63 4.3.2.2. Askorbat Peroksidaz (APX) Aktivitesi 64 4.3.2.3. Glutatyon Redüktaz (GR) Aktivitesi 65 4.3.2.4. Peroksidaz (POD) Aktivitesi 67 5. SONUÇLAR ve ÖNERİLER 69 KAYNAKLAR 80tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/restrictedAccesstr_TR
dc.subjectCarthamus tinctoriustr_TR
dc.subjectAspirtr_TR
dc.subjectCarthamus oxyacanthatr_TR
dc.subjectFotokimyasal aktivitetr_TR
dc.subjectNikeltr_TR
dc.subjectToleranstr_TR
dc.titleAspir Bitkisinin Yerel (Carthamus Tinctorius L.) ve Atasal (Carthamus Oxyacantha M. Bieb) Genotiplerinin Nikel Toleranslarının Belirlenmesi ve Fitoremediasyonunda Kullanılma Potansiyellerinin Değerlendirilmesitr_TR
dc.title.alternativeDetermination Of Nickel Tolerances Of Domestic (Carthamus Tinctorius L.) And Wild (Carthamus Oxyacantha M.Bieb.) Genotypes Of Safflower And Evaluation Of Their Usage Potential In Phytoremediationtr_eng
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetNikel (Ni+2) bitki büyüme ve gelişmesi için gerekli bir mikrobesin maddesi olup, yüksek konsantrasyonları oldukça toksik etkilere sahiptir. Bu çalışmada, nikelin yerel (Carthamus tinctorius L., Olas) ve atasal (Carthamus oxyacantha M. Bieb.) aspir genotiplerinin büyüme ve fotokimyasal aktiviteleri üzerindeki etkileri ve genotiplerin nikel toleransı ile biriktirme potansiyellerinin ortaya konulması amaçlanmıştır. Kontrollü koşullara sahip iklim kabininde (16/8 saat fotoperiyot, 180-200 µmolm-2s-1 ışık şiddeti, 23-25 ± 1°C gece/gündüz sıcaklık, %50±5 nem) su kültüründe 14 gün yetiştirilen bitkiler, 7 gün süre ile farklı nikel konsantrasyonlarına [kontrol, 0.5 mM, 0.75 mM ve 1.0 mM (NiCl2.6H2O)] maruz bırakılmıştır. Hem yerel hem de atasal genotiplerde nikel birikimine bağlı olarak, kök ve sürgün biyokütlesi azalmış ve bu azalışın, köklerde daha fazla olduğu tespit edilmiştir. Ayrıca, her iki genotip de kökleri ile aldıkları nikelin yaklaşık %8-18’ini yapraklara transloke etmiştir. Yapraklara az miktarda nikel taşınmasına rağmen, fotosentetik aparatlar olumsuz yönde etkilenmiştir. Toksik nikel düzeyleri, tilakoid membranlardaki spesifik (ABS/RC, TRO/RC, ETO/RC, REO/RC ve DIO/RC) ve fenomenolojik (ABS/CS, TRO/CSO, ETO/CSO ve DIO/CSO) enerji akışlarında, kuantum verimlerinde (Po ve DIo), PSII’nin donör (VK/VJ) ve PSI’in akseptör (ΔVIP) kısımlarının etkinliğinde değişimlere yol açmıştır. Bu değişimler, genotiplerin fotosentetik performanslarında (PIABS ve PITOP) önemli düzeyde azalmaya neden olmuştur, ancak nikelin bu olumsuz etkileri membran bütünlüğü ile anten ve aktif reaksiyon merkezlerindeki pigment miktarlarını etkilese de, bu etki fotosistemlerin işlevselliklerini durduracak düzeyde olmamıştır. Genotiplerin köklerinde süperoksit dismutaz (SOD) ve guaiakol peroksidaz (POD) enzimlerinin yüksek aktiviteleri ile toksik nikel düzeylerinin oluşturduğu oksidatif hasar ürünleri olan süperoksit (O2-) ve hidrojen peroksit (H2O2) detoksifiye edilirken; yapraklarda bu enzimlere ilaveten askorbat peroksidaz (APX) ve glutatyon redüktaz (GR) aktiviteleri ile aksesuar pigmentlerden antosiyanin ve flavonoidlerin miktarlarındaki artışın da savunmada etkili olduğu saptanmıştır. Yerel ve atasal genotipler, nikel toksisitesine karşı benzer tolerans sergilemişlerdir. Aspir bitkisinin, nikeli büyük oranda köklerinde biriktirmesinden dolayı nikelle kirlenmiş toprakların remediasyonunda (fitostabilizasyon) kullanılma potansiyelleri mümkün olabilir.tr_TR
dc.contributor.departmentBiyolojitr_TR
dc.contributor.authorID10226992tr_TR
dc.embargo.terms-tr_TR
dc.embargo.lift-


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster