Basit öğe kaydını göster

dc.contributor.advisorUğurlu, Ayşenur
dc.contributor.authorKerimbaeva, Gulzat
dc.date.accessioned2018-12-26T10:45:01Z
dc.date.available2018-12-26T10:45:01Z
dc.date.issued2018
dc.date.submitted2018-07-05
dc.identifier.citationKAYNAKLAR [1] Manson B., Thomas H.P., Hans W.L. Nuclear Chemical Engineering. New York. Chicago. San Francisco. Athens. London. Madrid. Mexico City. Milan. New Delhi. Singapore. Sydney. Toronto: McGraw-Hill Education. 1981. [2] Tananayev, İ. G. Уран (Uranyum). Moskova: Национальный исследовательский ядерный университет «МИФИ» (Milli Araştırma Atom Enerjjisi Üniversitesi). 2011. pp. 9. 19. 11. 76. [3] Jabo, V. V. Охрана окружающей среды на ТЭС и АЭС (. Moskova: Energoatomizdat. 1992. [4] Nesmeyanov, A. N. Радиоактивные элементы и их применение (Radioactive elemets and their application). Moskova: Военное издательство Министерства Обороны Союза (Soviyetler Birliği Milli Savunma Bakanlığının askeri yayını. 1955. [5] Bibudhendra, S. Heavy Metals İn The Environment. New-York: CRC Press. 2002. p. 712. [6] Katz J.J., Rabinowitch E. The Chemistry of Uranium. London: Mc-Graw-Hill Book Company. 1951. [7] Yablokov, A. V., Чудище обло. озорно. огромно. стозевно и лайя…. İrkutsk: Baykal Çevreciler Ağımı. 2009. p. 136. [8] Yong-Guan Z., Bao-Dong Ch., Principles and Technologies for Remediation of Uranium - Contminated Environment. cilt 8. Beijing. Haidian: Radioactivity in the Ebvironment. 2009. [9] World Health Organization. «Uranium in Drinking-water (Background document for development of WHO GuidliN.E.S. for Drinking-water Quality).» 2004. [10] Campbell, K. M., Radionuclides in Surface Water and Groundwater. Handbook of Water Purity and Quality. vol. 10. Menlo Park: U.S. Geological Survey. 2009. pp. 213-236. [11] Junghans. M., Hellinh C., Histırical mining. uranium tailings and waste disposal at one site-can it be managed? A hydrogeological analysis.. Colorado: Fort Collins. 1998. pp. 117-126. [12] Gongalsky, K.B., Impact of Pollution Caused by Uranium Production on Soil Macrofauna. Moskova: Environmental Monitoring and Assessment 89. 2003. p. 197–219. [13] Yablokov, A. V., Миф о безопасности малых доз радиации: Атомная мифология (Az dozdaki radyasyonun zararsızlığı efsanesi). Moskova: Центр экологической политики России. 2002. p. 145. [14] Gould, J. M., The Enemy Within: The High Cost of Living Near Nuclear Reactors. New-York. London: Da Capo Press. 1996. p. 282. [15] Mossman, K. L., Cold War Hot Nukes (Legacy of an Era). cilt Volume 109. Aleksandriya. 2001. pp. 162-169. [16] Rihvanov, L. P., Радиоактивные элементы в окружающей среде и проблемы (Çevredeki Radyoaktif Elementler ve Sorunları). cilt 10. Tomsk: Rusya Federasyonu'nun Eğitim ve Bilim Bakanlığı. 2009. p. 430. [17] Sternglass, E., «Cancer: Relation of prenatal radiationto Development of the desease in childhood.» Scince 140. pp. 1102-1104. 7 June 1963. [18] Kogall, Dj., Биологические эффекты радиации (Radyasyonun Biyolojik Etkileri). Moskova: Enorgoatomizdat. 1986. [19] Kuzin, A.M., Kauşanskiy D.A., Прикладная радиобиология (Radyobiyoloji). Moskova. 1981. [20] Hei, T.K., Mutagenic Effect of a Single and an Exact Number of Alpha Particles in Mammalian Cells.. cilt 94. Proc. Nat. Acad Sci.. 1997. pp. 3765-3770. [21] «Риски, связанные с ликвидацией ядерных боеприпасов (Nükleer Silahlarının Elemesiyle İlgili Riskler),» 2001. [22] Danby, G., «THORP and the nuclear fuel cycle..» cilt 93. no. 20. p. 20. 1993. [23] Ryabuhin, Y. S., Низкие уровни ионизирующего излучения и здоровье: системный подход (Аналитический обзор). (Düşük Dozdaki İyonlaştırıcı Radyasyon ve Sağlık: sistematir bir yaklaşım (Analitik Bakış)). cilt 45. Tıbbi Radyolojik ve Radyasyon Güvenliği. 2000. pp. 5-45. [24] Kolışkin A.E., Rıbalskiy N.G., Радиационная безопасность: Что должен знать о ней каждый человек (Radyasyon güvenliği: Bunun hakkında herkes ne bilmeli). Moskova: "РЭФИА" (REFİA). 1995. p. 47. [25] Moskalev Y., Streltsov V., «Отдаленные последствия радиационного поражения: Неопухолевые формы (Radyasyon Hasarının Uzun Vadeli Etkileri: Tümбr Olmayan Formlar.» %1 içinde ""Итоги науки и техники. Радиационная биология" ("Bilim ve Teknoloji. Radyasyon Biyolojisi Sonuçları''). Moskova. ВИНИТИ (VİNİTİ). 1987. p. 214. [26] Uşakov, İ.B., Karpov, V.N., Мозг и радиация (к столетию радионейробиологии) (Beyin ve Radyasyon (Radyoneyrobiyolojinin 100. Yılına). Moskova: ГНИИИ авиационная и космическая медицина (GNİİİ Havacılık ve Kozmos Tıbı). 1997. p. 76. [27] Volpe P., Parasassi T., Sapora O., «Influence of low doses of radiation on the DNA double.» Int. J. Rad. Med.. cilt 1. pp. 79-89. 1999. [28] Ron, E., Modan, B., Preston, D., «Radiation results.» pp. 516-531. 1989. [29] Neta, R., «Radiation Effects on Immune System.» %1 içinde ''Immunological Encyclopedia''. London. 1992. pp. 1298-1301. [30] Melnov, S. B., «Экологическая генетика человека в постчернобыльский период (Çernobıl Sonrası İnsanın Ekolojik Genetiği).» %1 içinde ''Post-Çernobıl Döneminde İnsan Ekolojisi'' VIII. Uluslararası Bilimse-Pratik Konferans. Minsk. 2001. [31] Radiation. «Radiation and health. Radiation sickN.E.S.s in South Korean village.» WISE News Communique. 1989. [32] Carter, R. L., «Low doses leukemogenic effects of A bomb irradiation.» Radiation Effect Research Foundation. Hiroshima. 1993. [33] Moskalev Y.L., Streltsov V., «Отдаленные последствия радиационного поражения: Неопухолевые формы.,» %1 içinde "Итоги науки и техники, Радиационная биолония" ('Bilim ve Teknoloji Sonuçları, Radyasyon Biyolojisi')., Moskova, VİNİTİ, 1987, p. 214. [34] Shevchenko, V. A., «Действие радиации и генетический груз в популяциях человека (Radyasyonun Etkisi ve İnsan Populasyonuna Genetik Yük).» %1 içinde "Жизнь в атомном и химическом мире" (Nükleer ve limya Dünyasında Hayat). Moskova. 1999. [35] Schull, W. J., «Futurestudies of the prenatal exposed survivors.» 'J. Radiat. Res.'.. pp. 385-393. 1991. [36] Principles.... «Principles for intervention for protection of the public in a radiological emergency..» 'Ann. Int. Comm. Rad. Protect.'. cilt 22. 1993. [37] Edward, D., Body Language — The Leaf Bugs Speak Out. cilt 29. Sweden: Ecologist. 1999. p. 411. [38] Hosse-Honegger, C. H., The Beautiful and the Other or Images of a Metating World. . Zurich–Berlin–New York: Scalo Publishers. 2001. [39] Akleev, A., Fonotov, M., «Радиация: риск рака. (Radyasyon: Kanser Riski).» "Челябинский рабочий" ("Çelyabinskiy raboçiy'). Çelyabinsk. 1995. [40] Bertel, R., «No immediate danger: Prognosis for a Radioactive Earth.» "Women press". London. 1985. [41] Bertel, R., «Comments on the History of Permissible Doze Standards.» 2000. [42] Yablokov, A. V., «No Immediate Danger: Prognosis for a Radioactive Earth».. London: The Women's Press. 1985. [43] Busby, Ch., Cato, M.S., «Increases in Leukemia in Infants in Wales and Scotland following Chernobyl: evidence for errors in statutory risk estimates and dose response assumptions.» %1 içinde 3rd International Conferance 'Health Effect of the Chernobyl Accident: Results of the 15-year Follow-Up Studies'. Kiev. Ukraine. 2001. [44] Chasnikov, İ. Y., Эхо ядерных взрывов (Atom Bombasının Patlatılmasının Yankıları). Almata. 1996. p. 98. [45] Busby, A. L., Radioactive Fallout from Atmospheric Nuclear Weapons Testing and its Association with Infant Mortality in England and Wales from 1958-1970. Manchester: Imperial College. 1993. [46] Busby, C. C., «Low Level Radiation from the Nuclear Industry.» %1 içinde The Biological Conferance ''Green Audit''. Aberystwyth. 1992. [47] Kovalyeva, N. V., «Генетические эффекты малых доз (Düşük Dozların Genetik Etkileri).» %1 içinde Материалы Российско-Американских слушаний «Перспективы развития безопасной энергетики в Ростовской области». Rostov-na-Donu. 2000. [48] Lloyd, J., «Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratoryand field-scale studies.» Current Opinion in Biotechnology. pp. 254-260. 2005. [49] Rufyikiri, G., Thiry, Y., Declerck, S., «Uptake and translocation of uranium by arbuscular mycorrhizal fungi under monoxenic culture conditions.» Biogeochemistry of Trace Elements in the Rhizosphere. pp. 431-455. 2005. [50] Bayramoğlu, G., Çelik., G., «Studies on accumulation of uranyum by fungus Lentinus sajor-caju.» Journal of Hazardous Material. pp. 345-353. 2005. [51] Genç, Ö., Yalçınkaya, Y., «Uranium recovery by immobilization and dried powdered biomass: charactirization and comparizon.» International Geaologic Mineralization Process. pp. 93-107. 2003. [52] Jing-Song, W., Xin-jaing Hu, «Biosorption of uranium (VI) by immobolized Aspergillus fumigatus beads.» Journal of Environmental Radiactivity. pp. 504-508. 2010. [53] Jing, B., Huijun, F., «Biosorption of uranium by chemically modified Rhodotorula glutinis.» Journal of Environmental Radiactivity. pp. 969-973. 2010. [54] Jing, B., Xiaolei, F., «Biosorption of uranyum by magnetically modified Rhodotorula glutinis.» Enzyme and Microbial Technology. pp. 382-387. 2012. [55] Jinbai, Y., Bohumil, V., «Biosorption of uranium on Sargassum biomass.» Elsevier Science Ltd.. pp. 3357-3363. 1999. [56] Macaskie, L.E., Lloyd, J.R., «Microbial interactions with radiactive wastes and potential applications.» Elsevier Science Ltd.. pp. 343-380. 2002. [57] Appakuttan, D., Seetharam, Ch., «PhoN-expressing. liophilized. recombinant Deinococcus radiodurans cells for uranyum biopresipitation.» Journal of Biotechnology. pp. 285-290. 2011. [58] Simonoff, M., Sergeant, C., «Microorganisms and migration of radionuclides in environment.» Comtes Rendus Chimie. pp. 1092-1107. 2007. [59] Miranda, J.K., Francis, R.L., «Microbial interactions with radionuclides – summary and future perspectives.» Elsevier Science Ltd.. pp. 383-390. 2002. [60] Suzuki, Y., Kelly, Sh. D., Kemner, K.M. Banfield, J.F., «Microbial Populations Stimulated for Hexavalent Uranyum Reduaction in Uranyum Mine Sediment.» Applied and Environmental Microbiology. cilt 3. pp. 1337-1346. 2003. [61] Dawn, E.H., Kevin, T.F., «Enrichment of Members of the Family with Stimulation of Dissimilatory Metal Reduction in Uranyum-Contaminated Aquifer Sediments.» Applied Environmental Microbiology. cilt 5. pp. 2300-2306. 2002. [62] Robert, T.A., Helen, A.V., «Stimulating In Situ Activity of Geobacter Species To Remove Uranyum from the Groundwater-Contaminated Aquifer.» Applied Environmental Microbiology. cilt 10. pp. 5884-5891. 2003. [63] Lovley, D.R., Philips, E.J., «Reduction of uranyum by Desulfovibrio desulfuricans.» Applied Environmental Microbiology. cilt 3. pp. 850-856. 1992. [64] Rajagopalan, G., Kevin, G.R., «Reductive precipitation of Uranyum by Desulfovibrio Desulfuricans: evoluation of cocontaminant effect and selective removal.» Elsevier Science Ltd.. cilt 16. pp. 3447-3458. 1999. [65] Paine, R.B., Gentry, D.M., «Uranium Reduction by Desulfovibrio desulfuricans Strain G20 and Cytochrome c3 Mutant.» Applied Environmental Microbiology. cilt 6. pp. 3129-3132. 2002. [66] Zhengji, Yi., «Microbial removal of uranyl by sulfate reducing bacteria in the presence of Fe(III) (hydr)oxides.» Journal of Environmetal Radioactivity. pp. 700-705. 2010. [67] Wang, Q., Dong, D., «Removal of SO42-. uranium and other heavy metal ions from simulated solution by sulfate reducing bacteria.» Transaction of Nonferous Metals of China. pp. 1529-1532. 2008. [68] Rizlan, B., Williams, S.M., «Global Transcriptional Profiling of Shewenella oneidensis MR-1 during Cr(VI) and U(VI) Reduction.» Applied Environmental Microbiology. pp. 7453-7460. 2005. [69] Robert, T.A., Lovley, D.R., Microbial redox interactions with uranium: an environmental perspective. Interactions of Microorganisms with radioonuclides. Chapter 7. 2002. pp. 205-223. [70] Cason, E.D., Pieteer, L.A., «Reduction of U(VI) by the deep subsurface bacterium. Thermus scotoductus SA-01. and the involvement of the ABC transporter protein.» Chemosphere. pp. 572-577. 2012. [71] Sani, R.K., Peyton, B.M., «Dissimilatory reduction of Cr(VI). Fe(III). and U(VI) by Cellulomonas isolates.» Applied Microbial Biotechnology. cilt 60. pp. 192-199. 2002. [72] Siphiwe, Ch., Evans, M.N.Ch., «Removal of uranyum (VI) under aerobic and anaerobic conditions using an indigenous mine consortium.» Minerals Engineering. cilt 23. pp. 526-531. 2010. [73] Yong-Guan, Z., Bao-Dong, Ch., «Principles and Technologies for Remediation of Uranium - Contminated Environment..» cilt 8. 2009. [74] Mackie, L.E., Dean, A.C., «Wate from Nuclear Plants.» Advanced Biotechnological Procedures. cilt 12. pp. 159-201. 1989. [75] Sangeeta, Ch., Pinaki, S., «Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste.» Journal of Hazardous Material. cilt 186. pp. 336-343. 2011. [76] Sufia, K.K., D'Sou-za, S.F., Pinaki, S., «Uranyum and Thorium sequestration by a Pseudo-monas sp.: Mechanism and chemical characterization.» Journal of Hazardous Materials. pp. 65-72. 2009. [77] Polman, K., Raff, J., «Metal binding by bacteria from uranyum mining waste piles and its tecchnological applications.» Biotechnology Advancces. cilt 7. no. 13. pp. 58-68. 2005. [78] Denny, A.C., Yelena, P.K., Leonel, E.L., «The effect of aqueous bicrbonate and calcium ions on uranyum biosorbsion by Arthrobacter G975 strain..» Chemical geology. Cilt %1 / %2330-331. pp. 51-59. 2012. [79] Rutchadaporn, S., Makoto, H., «A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engeneered rhizobia.» Journal of Biotechnology. cilt 99. pp. 279-293. 2002. [80] Martins, M., Falero, M.L., «Mechanism of uranyum (VI) removal by two anaerobic bacterial communities.» Journal of Hazardous Materials. cilt 184. pp. 89-96. 2010. [81] Shuibo X., Jing Y., «Study of biosorption kinetics and thermodynamics of uranym by Citrobacter freudii.» Journal of Environmental Radioactivity. cilt 99. pp. 126-133. [82] Ronald, M. A., Handbook of Microbiological Media. New York: CRC Press. 2010. [83] Miller, T.L., Wolin, M.J., «A Serum Bottle Modification of the Hungate Technique for Cultivating Obligate Anaerobes.» Applied Microbiology. cilt 5. no. 27. pp. 985-987. 1974. [84] Golmohammadi, H., Rashidi, A., Safdari, S.J., «Simple and Rapid Spectrophotometric Method for Determination of Uranium (VI) in Low Grade Uranium Ores Using Arsenazo (III).» Chemistry and Chemical Technology. cilt 6. 2012. [85] Kolmert, A., Wikström, P., Hallberg, K.B., «A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures.» Journal of Microbiological Methods. cilt 41. no. 41. p. 179–184. 2000. [86] Kai-Uwe, Ulrich, «Speciation-Dependent Kinetics of Uranium(VI) Bioreduction.» Geomicrobiology Journal. cilt 28. no. 5-6. pp. 396-409. 26 Temmuz 2011. [87] Ghazy, E. A., Mahmoud, M.G., Asker, M. S., «Cultivation and detection of sulfate reducing bacteria (SRB) in sea water.» Journal of American Science. cilt 7. no. 2. 2011. [88] Elizabeth, A.G., Kenneth, S.J., Kenneth, H.C., «Direct Ultraviolet Spectrophotometric Determination of Total Sulfide and Iodide in Natural Waters.» Analitical Chemistry. cilt 73. pp. pp.3481-3487. 2001. [89] Connon, R. «http://www.biosci.rdg.ac.uk/Research/eb/daphnia.htm.» Daphnia Research Group (University of Reading). 1 Temmuz 2007. [Çevrimiçi]. [90] Youngman. «Fitoplankton Biyolojik Kütlesinin (Biomas) Pigment Analizi ile Ölçümü (klorofil a).» 1978. [91] «http://biyokure.org/adsorpsiyon-izotermleri/6499/.» Biyoküre. 28 Ekim 2017. [Çevrimiçi]. [92] «http://www.selcuk.edu.tr/dosyalar/files/046016/Adsorpsiyon.pdf.» Selçuk Üniversitesi. Kimya Mühendisliği Bölümü. [Çevrimiçi]. [93] Kayacan, S., Kömür ve Koklarla Sulu Çözeltilerden Boyar Maddelerin Uzaklaştırılması. Ankara. 2007. [94] Uysal, Y., «Adsorpsiyon.» Ankara. 2016. [95] Eroğlu, H., Yapıcı, S., Nuhoğlu, Ç., Varoğlu, E., «An Environmental frindly process; Adsorption of radionuclide Tl-201 on fibrous waste tea.» Journal of Hazardous Materials. pp. 607-617. 2009. [96] Keilin, D., «Cytochrome and Intracellular Oxidase,» 1930. [97] Selivanov, E.A., Hmylov, G.A., Belyaeva, İ.S. Slepnyeva, L.V., Sidorova, N.D., «Способ количесьвенного определения Цитохрома С в препаратах. содержащих коллаген (Kolagen İçeren ileşenlerde Cytochrome C'nın Kantitatif Belirlenmesi)». Rusya Federasyonu Patent: 2084869. 20 Temmuz 1997. [98] Fredrickson , J. K., Zachara, J. M., Kennedy, D. W., Duff, M. C., Gorby, Y. A., Li, S. W., & Krupka, K. M., «Reduction of U(VI) in goethite (a-FeOOH) suspensions by a dissimilatory,» Geochimica et Cosmochimica Acta, cilt 64(18), pp. 3085-3098, 2000. [99] Langmuir, D., «Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits,» Geochimica et Cosmochimica Acta, cilt 42, pp. 547-569, 1978. [100] Abdelouas, A., «Uranium mill tailings: Geochemistry, mineralogy, and environmental impact,» Elements, cilt 2, no. 6, pp. 335-341, 2006. [101] Campbell, K. M., Gallegos, T. J., & Landa, E. R., «Biogeochemical aspects of uranium mineralization, m,ning, milling and remediation,» Applied Geochemistry, cilt 57, pp. 206-235, 2015. [102] Tapia-Rodriguez, A., Luna-Velasco, A., Field, J. A., & Sierra-Alvarez, R., «Anaerobic bioremediation of hexavalent uranium in,» Water Research, cilt 44, pp. 2153-2162, 2010. [103] Belli , K. M., & Taillefert, M., «Geochemical controls of the microbially mediated redox cycling of uranium and iron,» Geochemica et Cosmochimica Acta, cilt 235, pp. 413-449, 2018. [104] Waite , T. D., Davis, J. A., Payne, T. E., Waychunas , G. A., & Xu, N., «Uranium (VI) adsorption to ferrihydrite: Application of surface complexation model,» Geochimica et Cosmochimica Acta, cilt 58, pp. 5465-5478, 1994. [105] Ulrich, K. U., Veeramin, H., Bernier-Latmani, R., & Giammar, D. E., «Speciation-dependent kineticas of uranium (VI) bioreduction,» Geomicrobial Journal, cilt 28, pp. 396-409, 2011. [106] Belli, K. M., DiChristina, T. J., Cappelen, P. V., & Taillefert, M., «Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction,» Geachimica etbCosmochimica Acta, cilt 157, pp. 109-124, 2015. [107] Nilgiriwala, K. S., Alahari, A., Rao, A. S., & Apte, S. K., «Cloning and overexpression of Alkaline Phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions,» Applied and Environmental Microbiology, cilt 74, no. 17, pp. 5516-5523, 2008. [108] Behrends, T., & Cappellen, P. V., «Compition between enzimatic and abiotic reduction of uranium (VI) under iron reducing conditions,» Chemical Geology, cilt 220, pp. 315-327, 2005. [109] Hua, B., Xu, H., Terry, J., & Deng, B., «Kinetics of uranium (VI) reduction by hydrogen sulfide in anoxic aqueous system,» Environmental Science and Technology, cilt 40, pp. 4666-4671, 2006. [110] Merroun, M. L., & Selenska-Pobell, S., «Bacterial interactions with uranium: An environmental perspective,» Journal of Contaminant Hydrology, cilt 102, no. 3-4, pp. 285-295, 2008. [111] Lovley , D. R., Philips, E. P., Gorby, Y. A., & Landa, E. R., «Microbial reduction of uranium,» Nature, cilt 59, no. 11, pp. 413-416, 1991. [112] Suzuki, Y., & Suko, T., «Geomicrobiological factors that control uranium mobility in the environment: update on recent advances in the bioremediation of uranium-contaminated sites.,» Journal of Mineral Petrol Science, cilt 101, no. 6, pp. 299-307, 2006. [113] Wall, J. D., & Krumholz, L. R., «Uranium reduction,» The Annual Review of Microbiology, cilt 60, pp. 149-166, 2006. [114] Francis, A. J., Dodge, C. J., Lu, F., Halada, G. P., & Clayton, C. R., «XPS and XANES studies of uranium reduction by Clostridium sp.,» Environmental Science Technology, cilt 48, pp. 275-289, 1994. [115] Lloyd, J. R., Chesnes, J., Glasauer, S., Bunker, D. J., Livens, F. R., & Lovley, D. R., «Reduction of actinides and fission products by Fe(III)-reducing bacteria,» Geomicrobiological Journal, cilt 19, pp. 103-120, 2002. [116] Lovley, D. R., Widman, P. K., Woodward, J. C., & Philips, E. P., «Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris,» Applied Environmental Microbiology, cilt 59, pp. 3572-3576, 1993. [117] Shelobolina, E. S., Sullivan, S. A., O'Neill, K. R., & Lovley, D. R., «Isolation, charactarization, and U(VI)-reducng potential of a facultatively anaerobic, acid-resistant bacterium from low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp.,» Applied Environmental Microbiology, cilt 70, pp. 2959-2965, 2004. [118] Sima Sariaslan, Geoffrey Michael Gadd. Advances in Applied Microbiology. Delaware. USA: Zoe Kruze. 2017. p. 115. [119] Robert, A. S., Cytochrome C: A multidisciplinary approach. Sausalito University Science. 1996. [120] Liu, J.-x., Xie, S.-b., Wang, Y.-h., & Liu, Y.-j., «U(VI) reduction by Shewanella oneidensis mediated by anthraquinone-2-sulfonate,» Transaction of Nonferrous Metals Society of China, cilt 25, pp. 4144-4150, 2015. [121] Senko, J. M., Kelly, S. D., Dohnalkova, A. C., Mc.Donough, J. T., Kemner, M. K., & Burgos, W. D., «The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV),» Geochemica et Cosmochimica Acta, cilt 71, pp. 4644-4654, 2007. [122] Li, X., Ding, C., Liao , J., & Du, L., «Microbial reduction of uranium U(VI) by Bacillus sp. dwc-2: A microscopic and spectroscopic study,» Journal of Environmental Science, cilt 9, p. 15, 2017. [123] Sani, R. K., Peyton, B. M., Smith, W. A., Apel, W. A. ve Petersen, J. N., «Dissimilatory reduction of Cr(VI), Fe(III), and U(VI) by Cellulomonas isolates,» Applied Microbial Biotechnology, cilt 60, pp. 192-199, 2002. [124] Mtimunye, P. J., & Chirwa, E. M., «Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria,» Chemosphere, cilt 113, pp. 22-29, 2014. [125] Lee, S. Y., & Baik, M. H., «Biological Immobilization of Dissolved Uranium - 11578,» %1 içinde WM2011 Conference, Daaejeon, Korea, 2011. [126] Mtimunye, P., & Chirwa, E., «Biological reduction of radionuclides under facultative anaerobic conditions using radiation tolerent consortium,» WEFTEC, 2013. [127] Wu, Q., Sanford, R. A., & Löffler, F. E., «Uranium (VI) Reduction by Anaeromixobacter dehalogenans Strain 2CP-C,» Applied and Environmental Microbiology, cilt 72, no. 5, pp. 3608-3614, 2006. [128] Khijniak, T. V., Slobodkin, A. I., Renshaw, J. S., Coker, V., & Livens, F. R., «Reduction of Uranium (VI) Phosphate during Growth of the Thermophilic Bacterium Thermoterrabacterium ferrireducens,» Applied and Environmental Microbiology, cilt 71, no. 10, pp. 6423-6426, 2005. [129] Chabalala, S., & Chirwa, E. M., «Uranium (VI) reduction and removal by hing performing perified anaerobic cultures from mine soil,» Chemosphere, cilt 78, pp. 52-55, 2010. [130] Abdelouas, A., Lutze, W., Gong, W., Nuttall, E. H., Strietelmeier, B. A., & Travis, B. J., «Biological reduction of uranium on groundwater and subsurface soil,» The Science of the Total Environment, cilt 250, pp. 21-35, 2000. [131] Gargarello, R. M., Gregorio, D. D., Huck, H., Niello, J. F., & Curutchet, G. «Reduction of uranium (VI) by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans,» Hydrometallurgy, cilt 104, pp. 529-532, 2010. [132] Ray, A. E., Bargar, J. R., Sivaswamy, V., Dohnalkova, A. C., & Fujita, Y., «Evidence for multiple modes of uranium immobilization by an anaerobic bacterium,» Geochemica et Cosmochimica Acta, cilt 75, pp. 2684-2695, 2011. [133] Roden, E. E., & Scheibe, T. D.e, «Conceptual and numerical model of uranium (VI) reductive immobilization in fractured subsurface sediments,» Chemosphere, cilt 59, pp. 617-628, 2005. [134] Mullen, L., Klepac, V., Pharino, C., Czerwinski , K., & Polz, M., «Cell density dependent reduction kinetics of hexavalent uranium bu Shewanella oneidensis,» Materials Research Society symposia proceedings, p. 757, 2002. [135] Shelobolina, E. S., Coppi, M. V., Korenevsky, A. A., & DiDonato, L. N., «Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens,» BMC Microbiology, cilt 7, p. 16, 2007. [136] Gorby, Y. A., & Lovley, D. R., «Enzymatic uranium precipitation,» Environmental Science Technology, cilt 26, pp. 205-207, 1992. [137] Fletcher, K. E., Boyanov, M. I., Thomas, S. H., Wu, Q., Kemner, K. M., & Löffler , F. E., «U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species,» Environmental Science Technology, cilt 44, pp. 4705-4709, 2010. [138] Sanford, R. A., Wu, Q., Sung, Y., Thomas, S. H., Amos, B. K., Prince, E. K., & Löffler, F. E., «Hexavalent uranium supports growth of Anaeromixobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields,» Environmental Microbiology, cilt 9, pp. 2885-2893, 2007. [139] Dargent, M., Truche, L., Dubessy, J., Bessaque, G., & Marmier, H., «Reduction kinetics of aqueous U(VI) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits,» Geochemica et Cosmochimica Acta, cilt 167, pp. 11-26, 2015. [140] Sawyer C.N., M. P., Chemistry for Environmental Engineering and Science, 5 dü., New York: McGraw-Hill, 2003, p. 763. [141] Guillaumont R., F. T., Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium., Amsterdam: Elsevier, 2003, p. 959. [142] Bender, J., Duff, M. C., Philips, P., & Hill, M., «Bioremediation and Bioreduction of Dissolved U(VI) by Microbial Mat Consortium Supported on Silica Gel Particles,» Environmental Science and Technology, cilt 34, pp. 3235-3241, 2000. [143] Finneran, K. T., Anderson, R. T., Nevin, K. P., & Lovley, D. R., «Potential for bioremediation of uranium contaminated aquifers with microbial U(VI) reduction,» Soil and Sediment Contamination, cilt 11, pp. 339-357, 2002. [144] Yohey, S., Shelly, D. K., Kenneth , M. K., & Jillian, F. B., «Direct microbial reduction and subsequent preservation of uranium in near surface sediment,» Applied and Environmental Microbiology, cilt 71, pp. 1790-1797, 2005. [145] Craig, D. K., «Chemical and radiological toxicity of uranium and its compounds. WSRC-TR,» Westinghouse Savannah River Company, Aiken, 2001. [146] Wielinga, B., Bostick, B., Hansel, C., Rosenzweig, R., & Fendorf, S., «Inhibition of bacterially promoted uranium reduction: Ferric (hydr)oxide as competitive electron ecceptors,» Environmental Science Technology, cilt 34, pp. 2190-2195, 2000. [147] Zheng-Ji, K.-X. T., «Influence of Environmental factors on reductive bioprecipitation of uranium by sulfate reducing bacteria,» International Biodeterioration and Biodegradation, cilt 60, pp. 258-266, 2007. [148] O'Loughlin, E. J., Kelly, S. D., Cook, R. E., Csencsits, R., & Kemner, K. M., «Reduction of uranium (VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles,» Environmental Science and Technology, cilt 37, pp. 721-727, 2003. [149] Boonchayaanant, B., Gu, B., Wang, W., Ortiz , M. E., & Criddle, C. S., «Microbially-generated hydrogen sulfide can account for the rates of U(VI) reduction by sulfate reducing bacteria,» Biodegradation Journal, 2009. [150] Roy, W. J., & Thomas, J. D., «Isolation of U(VI) reduction-deficient mutant of Shewanella putrefaciens,» FEMS Microbiology Letters, cilt 184, pp. 143-148, 2000. [151] Chang, Y., Peacock, A. D., Long, P., Stephen, J. R., McKinley, J. P., & e.t.c., «Diversityand characterization of sulfate-reducingn bacteriain groundwater at a uranium mill tailing site,» Applied and Environmental Microbiology, cilt 67, pp. 3149-3160, 2001. [152] Holems, D. E., Finneran , K. T., O'Neil, R. A., & Lovley, D. R., «Enrichment of members of the family Geobacterraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments,» Applied and Environmental Microbiology, cilt 68, pp. 2300-2306, 2002. [153] Elias, D. A., Suflita, J. M., & McInerney, J. M., «Periplasmic cytochrome c3 of Desulfovibrio vulgaris is directly involved in H2-mediated metal but not sulfate reduction,» Applied and Environmental Microbiology, cilt 70, pp. 413-420, 2004. [154] Nadia, N. N., Sherry, L. D., Lainie, P., Jonathan , D. I., David, L. B., & Joel, E. K., «Change in bacterial community structure during in-situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate,» Applied and Environmental Microbiology, cilt 70, pp. 4911-4920, 2004. [155] Yi, Z.-J., Tan, K.-X., Tan, A.-L., Yu, Z.-X., & Wang, S.-Q., «Influence of environmental factors on reductive bioprecipitation of uranium by sulfate reducing bacteria,» International Biodeterioration and Biodegradation, cilt 60, pp. 258-266, 2007. [156] Scott, C. B., James, K. F., Sue, L. C., David, W. K., & e.t.c., «Inhibition of bacterial U(VI) reduction by calcium,» Environmental Science and Technology, cilt 37, pp. 1850-1858, 2003. [157] Sani, R. K., Peyton, B. M., Amonette, J. E., & Geesey , G. G., «Reduction of U(VI) under sulfate-reducing conditions in the presence of Fe(III) (hydr)oxides,» Geochimica et Cosmochimica Acta, cilt 68, pp. 2639-2648, 2004. [158] Payne, R. B., Gentry, D. M., RappGiles, B. J., Casalot, L., & Wall, J. D., «Uranium reduction by Desulfovibrio desulfuricans strain G20 and cytochrome c3 mutant,» Applied and Environmental Microbiology, cilt 69, pp. 5884-5891, 2002. [159] Haluk, B., Rajesh , K. S., Brent, M. P., Alice, C. D., James, E. A., & Zbigniew, L., «Uranium immobilization by sulfate reducing biofilms,» Environmental Science and Technology, cilt 38, pp. 2067-2074, 2004. [160] Sani, R. K., Parton, B. M., Dohnalkova, A., & Amonette, J. E., «Reoxidation of reduced uranium with Fe (III) (hydr)oxide under sulfate-reducing conditions,» Environmental Science and Technology, cilt 39, pp. 2059-2066, 2005. [161] Hu, N., Ding, D.-x., Li, S.-M., Tan, X., Li, G.-y., Wang, Y.-d., & Xu, F., «Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions,» Journal of Environmental Radioactivity, cilt 157, pp. 60-67, 2016. [162] Moon, H. S., Mc.Guinness, L., Kukkadapu, R. K., Peacock, A. D., & e.t.c., «Microbial reduction of uranium under iron- and sulfate- reducing conditions: Effect of amended goathite on microbial community composition and dynamics,» Water Researcg, cilt 44, pp. 4015-4028, 2010. [163] Lloyd, J. R., Noling, H. F., Sole, V. A., Bosecker, K., & Macaskie, L. E., «Technetium reduction and precipitation by sulfate-redung bacteria,» Geomicrobiology Journal, cilt 15, pp. 45-58, 1998. [164] Waybrant, K. R., Blowes, D. W., & Ptacek, C. J., «Selection of reactive mixtures for use in permiable reactive walls for treatment of mine drainage,» Environmental Science and Technology, cilt 32, pp. 1972-1979, 1998. [165] Webb, J. S., McGuinnes, S., & Lappin-Scott, H. M., «Metal removal by sulfate-reducing bacteria from natural and constructed wetlands,» Journal of Applied Microbiology, cilt 84, pp. 240-248, 1998. [166] Gibert, O., Pablo, d. J., Cortina, J. L., & Ayora, C., «Treatment of acid mine drainage sulfate reducng bacteria using permiable reactive barriers: a review from laboratory to full-scale experiment,» Environmental Science and Bio/Technology, cilt 1, pp. 327-333, 2002. [167] Juan, L., Weber, F.-A., Cirpka, O. A., Wu, W.-M., & e.t.c., «Modeling in-situ uranium(VI) bioreduction by sulfate reducing bacteria,» Journal of Contominant Hydrology, cilt 92, pp. 129-148, 2007. [168] Robert A.S., G. A., Cytochrome C: A multidisciplinary approach, Sausalito University Science, 1996. [169] Wang, M. Y., Liang, X. B., Zheng, Y. P., Zhao, Y. Z., & Wei, Z. Q., «Advances in identification of sulfate reducing bacteria and its detection method,» Journal of Microbiology, cilt 25(6), pp. 81-84, 2005. [170] Zhang, F., Wu, W.-M., Parker, J. C., Mehlhorn, T., & Kelly, S. D, «Kinetic analysis and modeling of oleate and ethonol stimulated uranium (VI) bio-reduction in contaminated sediments under sulfate reducing conditions,» Journal of Hazardous Material, cilt 183, pp. 482-489, 2010. [171] Azabou, S., Mechichi, T., & Sayadi, S., «Zink precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source,» Minerals Engineering, cilt 20, pp. 173-178, 2007. [172] Luo, J., Weber, F.-A., Cirpka, O. A., Wu, W.-M., & Nyman, J. L., «Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria,» Journal of Contaminant Hydrology, cilt 92, pp. 129-148, 2007. [173] Spear, J. R., Figueroa, L. A., & Honeyman, B. D., «Modeling the removal of uranium U(VI) from aqueous solutions in the presens of sulfate reducing bacteria,» Environmental Science Technology, cilt 33, no. 15, pp. 2667-2675, 1999. [174] Erkaya, I. A., Arica, M. Y., Akbulut, A., & Bayramoğlu, G., «Biosorption of uranium(VI) by free and entrapped Chlamydomonas reinhardii: kinetik, equilibrium and thermodynamic studies,» Journal Radioanal. Nucl. Chem., cilt 299, pp. 1993-2003, 2014. [175] Suresh Kumar, K., «Microalgae – A promising tool for heavy metal remediation,» Ecotoxicology and Environmental Safety, pp. 329-352, 2015. [176] Monteiro C, C. P., «Metal uptake by microalgae: underlying mechanisms and practical applications,» Wiley Online Library, pp. P-4200, 6 January 2012. [177] Laliberte G., Proulex, D., De Pauw N., De la Noue J., «Algal Technology in Wastewater Treatment,» cilt 5, no. 7, pp. 283-382, 1994. [178] Philip D.S., Peters T., Adams V.D., Middlebrooks E.J., «Residual heavy metal removal by an algae-intermittent sand filtration system.,» Water Resourse, cilt 13, no. 3, 1979. [179] Pena-Castro, J.M. «Heavy metals removal by the microalga Scenedesmus sp. incrassatulus,» Bioresource Technology, p. February , 13 February 2004. [180] Zeraatkar, A. K., H. Ahmadzadeh, A. F. Talebi, N. R. Moheimani and M. P. McHenry (2016). "Potential use of algae for heavy metal bioremediation, a critical review., «Potential use of algae for heavy metal bioremediation, a critical review,» Journal of Environmental Management 181, pp. 817-831, 26 June 2016. [181] Zhang, X., X. Zhao, C. Wan, B. Chen and F. Bai, «Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus sp. obliquus AS-6-1». [182] da Fontoura, J. T., «Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp.,» nstitution of Chemical Engineers, cilt 111, pp. 355-35, 2017. [183] Ferreira, A., B. Ribeiro, P. A. S. S. Marques, A. F. Ferreira, A. P. Dias, H. M. Pinheiro, A. Reis and L. Gouveia, «Scenedesmus sp. obliquus mediated brewery wastewater remediation and,» Journal of Cleaner Production 165, pp. 1316-1327, 31 July 2017. [184] Zhang, J., Ding, T. and Zhang, C., «Biosorption and toxicity responses to arsenite (As[III]) in Scenedesmus sp.,» Chemosphere 92, p. 1077–1084, 27 February 2013. [185] Dosnon-Olette, R., P. Trotel-Aziz, M. Couderchet and P. Eullaffroy, «Fungicides and herbicide removal in Scenedesmus sp. cell suspensions,» Chemosphere 79, p. 117–123, 24 February 2010. [186] Chansong Zhao, Jun Liu, Xiyang Li, «Biosorption and biaccumulation behavior of uranium on Bacillus sp. dwc-2: Investigation by Box-Behenken design method,» Journal of Molecular Liquids, cilt 221, pp. 156-165, 2016. [187] Moghaddam M.R., Fatemi Sh., Keshtkar A., «Adsorption of lead and uranium cations by brown algae; experimental and thermodynamic modeling,» Chemical Engineering Journal, cilt 231, pp. 294-303, 2013. [188] Horikoshi T, Nakajima A, Sakaguchi T., «Uptake of uranium by various cell fractions of Chlorella sp. regularis.,» Radioisotopes, cilt 28, no. 8, pp. 485-488, 1979. [189] Alix Günther, Johannes Raff, Gerhard Geipel, Gert Bernhard, «Spectroscopic investigations of U(VI) species sorbed by the green algae Chlorella sp. vulgaris,» Biometals , cilt 21, pp. 333-341, 2008. [190] Vogel, M., Günther, A., Rossberg, A., Li, B., & Bernh, G., «Biosorption of U(VI) by the green algae Chlorella sp. vulgaris in dependence of pH value,» Science of the Total Environment , Cilt %1 / %2384-395, p. 409, 2010. [191] «http://www.frmsinsi.net/showthread.php?t=724094,» 9.6.2012. [Çevrimiçi]. [192] Rayford B.P., Darren M.G., Barbara J.R.-G., Laurence C., Judy D.W., «Uranium Reduction by Desulfovibrio desulfurcans Strain G20 and a Cytochrome c3 Mutant,» Applied and Environmental Microbiology, cilt 6, no. 3129, June 2002. [193] Campbell, K. M., Radionuclides in Surface Water and Groundwater, Handbook of Water Purity and Quality, cilt 10, Menlo Park, Middlefield RD: U.S. Geological Survey, 2009, pp. 213-236. [194] Yablokov, A. V., Myth on Environmental Safery of Nuclear Power, Moscow: ''Psycology'', 2001, p. 136. [195] Sawyer C.N., McCarty PL, Parkin G.F., Chemistry for Environmental Engineering and Science, New York: McGraw-Hill, 2003, p. 763. [196] «www.shutterstock.com - 73714504,» [Çevrimiçi].tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/5559
dc.description.abstractIn the current work, the remediation of uranium contaminated water, which is a very dangerous radioactive and heavy metal in terms of human and environmental health, was investigated by different biotechnological methods. The first part of the studies carried out as two sections investigated the uranium removal with bacteria (mixed anaerobic / sulphate reducing), while biosorption with microalgae was investigated in the second part. Prior to making the uranium removal in water with URMM (uranium resistant mixed microorganisms) in anaerobic conditions, uranium-resistant microorganisms was obtained by growing in the medium containing different uranium concentrations and making several transfers to the new medium containing uranium, in aproximately 1 year period. The 3 different uranium removal experiments were performed by URMM. In the first experiment the removal of uranium in water was conducted at pH 7 and with low uranium concentrations (5mg/L, 25mg/L, 50mg/L) with live and heat killed URMM. In the samples with the heat killed URMM uranium removal of 24-78% and with the living URMM 40-79% have been optained. In a second experiment uranium (100 mg/L) removal anaerobic Batch experiments in water in different ORP (100mV, 50mV, -50mv, -100mv) and pH values (4-10) were held. As a result, 78.1% to 96.3% uranium removal were obtained in 3 days. Most removal was obtained at -50 ORP and pH 7. In the third experiment was tried the removal of different uranium concentrations and in ultrapure water. As a result of this experiments, the uranium removal were between 0.33 - 53%. All the experiments were repeated 4 times. The uranium removal experiments by SRB (sulfate reducing bacteria) at different redox potential (50mV, 100mV, -50mv and -100mv) and pH (4; 7; 10) conditions were performed in anaerobic Batch reactors. It took 3-10 days for uranium removal in all reactors. The high uranium removal percentages of 95.36% to 99.9% have been achieved. The highest removal was in the negative redox potentials (-50mv and -100mv). Here the uranium concentration decreased from initial 100 mg/L to 0,777mg/L (for -50mv) and 0,115mg L (for -100mv). The experiments were repeated 4 times. The U (VI) reducing the rate with SRB determination, thermodynamic and visualMINTEQ program calculations were made and the results were analyzed. In the second part, uranium removal was investigated by using microalgae. In these studies, Scenedesmus sp. and Chlorella sp. microalgae species were used. Uranium removal from water with Scenedesmus sp. microalgae has been investigated. The uranium concentrations of 5mg/L, 10mg/L, 15mg/L and different microalgae concentrations (41.54 mg / L and 115.94 mg / L) were used in the experiments. The uranium removal in the water was carried out under different physical-chemical conditions (pH, temperature) and for 2 hours. The obtained results were analyzed by plotting the adsorption effects of different parameters. Also the three-dimensional graphs were analyzed with the help of Box-Behnken program and the optimal conditions of the variable parameters were found. Optimal conditions were as follows: pH 6-8, temperature 45⁰C, algae alive, high algae concentration, duration 55-62,4 minutes. When such optimal conditions are met, the yield is as high as 90-100%. With the help of statistical calculation ANOVA it also revealed that pH, the first concentration of uranium and the concentration of algae, are important parameters affecting the removal of uranium. Studies with Chlorella have investigated uranium removal in two different microalgae concentrations (71.61 mg / L and 282.42 mg / L). Here too, the experiments with Chlorella sp. microalgaes have been caried out in the same way as with Scenedesmus sp. microalgaes. Here, pH, the initial concentration of uranium and the duration were determined as the most important parameters affecting the removal of uranium. Optimal conditions were the same as those in the experiments with Scenedesmus sp. microalgaes. When optimal conditions were met, it was gotten over 95% of uranium removal. In order to determine whether or not the reduction of uranium with anaerobic bacteria has been accomplished with 'Cytochrome C' protein as mentioned in some studies, this protein was firstly synthesized from bread yeast in laboratory conditions for the removal of uranium in the Batch reactors by this protein. The concentration changes of the reduced and oxidized 'Cytochrome C' during the experiments were measured daily. As a result, it was observed that the increase of the degree of oxidation of 'Cytochrome C' protein was almost the same with the decrease of the degree of its reduction. Thus, the reduction of uranium is accomplished by the oxidation of Cytochrome C, which is the result of electrons transferring from the protein to uranium.tr_TR
dc.description.tableofcontentsİÇİNDEKİLER Sayfa KABUL VE ONAY. ii YAYINLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI iii ETİK iv ÖZET v ABSTRACT vii TEŞEKKÜRLER ix İÇİNDEKİLER x ÇİZELGELER DİZİNİ lxxvii ŞEKİLLER DİZİNİ lxxix SİMGELER VE KISALTMALAR lxxxvii 1. GİRİŞ 1 2. LİTERATÜR ÖZETİ 3 2.1. Suların Uranyumla Kirlenme Derecesi 3 2.2. Uranyumun Sağlığa ve Ekosisteme Olan Tehlikeli Etkileri 5 2.2.1. Sağlığa Olan Toksik Etkileri 5 2.2.2. Sağlığa Karşı Radyoaktif Etkileri 5 2.2.2.1. Uranyumun Radyoaktif Tehlike Derecesi 5 2.2.2.2. Düşük Dozdaki Radyasyonun Tehlikeliliği 11 2.3. Sudaki Uranyumun Biyoteknolojik Arıtma Yöntemleri 14 3. AMAÇ VE KAPSAM 21 4. MATERYAL VE METODLAR 23 4.1. U.D.K.M. ile Yapılan Anaerobik Deneylerin Materyal ve Metodları 23 4.1.1. Kullanılan Kimyasallar ve Mikroorganizma Kaynağı 23 4.1.2. Uranyuma Dayanıklı Mikroorganizmaların Elde Edilmesi ve Çoğaltılması 23 4.1.3. Stok Çözeltilerinin Hazırlanması 25 4.1.4. Analitik Yöntemler 26 4.1.4.1. Çözeltideki Bakterilerin Kütlesinin Ölçülmesi 26 4.1.4.2. Arsenazo Yöntemiyle Uranyum Konsantrasyonunun Ölçülmesi 27 4.1.4.3. Sülfat Konsantrasyonunun Ölçülmesi 27 4.1.5. Hesaplama Yöntemleri ve Denklemleri 27 4.1.5.1. Termodinamik Hesaplamalar İçin 27 4.1.5.2. Uranyum (VI)’nın İndirgenme Hızının Hesaplanması 28 4.2. S.İ.B. ile Yapılan Anaerobik Deneylerin Materyal ve Metodları 29 4.2.1. Kullanılan Kimyasallar ve Mikroorganizma Kaynağı 29 4.2.2. Sülfat İndirgeyen Bakterilerin İzolasyonu 29 4.2.3. Stok Çözeltilerin Hazırlanması 32 4.2.4. Analitik Yöntemler 32 4.2.4.1. Hidrojen Sülfür Gazının Ölçülmesi 32 4.3. Algler ile Yapılan Aerobik Deneylerde Uygulanan Materyal ve Metodlar 33 4.3.1. Kullanılan Kimyasallar ve Mikroalgler 33 4.3.2. Stok Çözeltilerinin Hazırlanması 33 4.3.3. Mikroalglerin Çoğaltılması 33 4.3.4. Analitik Yöntemler 35 4.3.4.1. Klorofil-a Ölçümü 35 4.3.4.2. Uranyum (VI) Konsantrasyonunun Ölçülmesi 35 4.3.5. Hesaplama Yöntemleri ve Denklemler 35 4.3.5.1. Adsorpsiyon İzoterminin Hesaplamaları 35 4.3.5.2. Adsorpsiyon Termodinamiğinin Hesaplanması 39 4.3.5.3. Adsorpsiyon Kinetiği Hesaplamaları 39 4.4. ‘Cytochrome C3’ ile Anaerobik Deneylerin Materyal ve Metotları 40 4.4.1. Kullanılan Kimyasallar Kaynağı 40 4.4.2. ‘Cytochrome C3’ Proteininin Sentezi 40 4.4.3. Analitik Yöntemler 41 4.4.3.1. U(VI) Konsantrasyonunun Ölçülmesi 41 4.4.3.2. İndirgenmiş ve Oksitlenmiş ‘Cytochrome C3’ Konsantrasyonlarının Ölçülmesi ……………………………………………………………………………………41 4.4.4. Hesaplama Yöntemleri ve Denklemler 41 5. KESİKLİ REAKTÖR DENEYLERİNİN YAPILMASI 42 5.1. Uranyuma Dayanıklı Karışık Mikroorganizmalarla Anaerobik Deneyler 42 5.1.1. Birinci Set: 5-50mg/L Uranyum İçeren Suların Standart Şartlarda Giderilmesi..42 5.1.2. İkinci Set: 100mg/L Uranyum İçeren Suların Farklı pH ve ORP Şartlarında Giderilmesi......................................................................................................................44 5.1.3. Üçüncü Set: Uranyumun Ultrasafsu Ortamından U.D.K.M. ile Giderimi 45 5.2. Sülfat İndirgeyen Bakteriler ile Anaerobik Deneyler 46 5.3. Scenedesmus sp. Mikroalgleriyle Aerobik Deneyler 47 5.4. Chlorella sp. Mikroalgleriyle ile Aerobik Deneyler 48 5.5. Sudaki Uranyumun ‘Cytochrome C’ Proteini ile Gideriminin Anaerobik Deneylerinin Yapılması 49 6. SONUÇ VE TARTIŞMALAR 50 6.1. U.D.K.M. ile Deneylerin Sonuç ve Tartışmaları 50 6.1.1. Uranyuma Dayanıklı Karışık Kültürlerin (U.D.K.M.) Elde Edilmesi 52 6.1.2. Uranyuma Dayanıklı Karışık Kültürlerin (U.D.K.M.) Türlerinin Belirlenmesi 56 6.1.3. Sudaki Uranyumun U.D.K.M. ile Giderim Deneylerinin Sonuçları 59 6.1.3.1. Birinci Set: 5-50mg/L Uranyum İçeren Suların Standart Şartlarda Giderilmesi ……………………………………………………………………………………59 6.1.3.2. İkinci Set: 100mg/L Uranyum İçeren Suların Farklı pH ve ORP Şartlarında Giderilmesi 60 6.1.3.3. Redoks Potansiyelin Etkisi 63 6.1.4. Üçüncü Set: Ultra Safsu Ortamında Uranyumun U.D.K.M. ile Giderilmesi 64 6.1.5. Sülfat Konsantrasyonunun Değişimi 66 6.1.6. Uranyum (VI)’nın U.D.K.M. ile İndirgenme Hızının Hesaplanması 66 6.1.7. Termodinamik Hesaplamalar 71 6.1.8. VisualMINTEQ Programı ile Hesaplamalar 74 6.2. S.İ.B. ile Anaerobik Deneylerin Sonuç ve Tartışmaları 74 6.2.1. Sülfat İndirgeyen Bakterilerin İzolasyonu 76 6.2.2. Sudaki Uranyumun S.İ.B. ile Giderimi Anaerobik Deneylerinin Sonuçları 78 6.2.3. Sülfat Konsantrasyonunun Değişimi 82 6.2.4. Uranyum (VI)’nın S.İ.B. ile İndirgenme Hızının Hesaplanması 82 6.2.5. Termodinamik Hesaplamalar 88 6.2.6. VisualMINTEQ Programı ile Hesaplamalar 90 6.3. Scenedesmus sp. Mikrooalgleriyle Deneylerinin Sonuç ve Tartışmaları 90 6.3.1. Temas Süresinin Etkisi 94 6.3.2. Uranyumun Başlangıç Konsantrasyonunun Etkisi 95 6.3.3. Başlangıç pH Değerinin Etkisi 100 6.3.4. Sıcaklığın Etkisi 104 6.3.6. Uranyum Adsorpsiyonunun Yanıt Yüzey Metodu (YYM) ile Optimizasonu 112 6.3.6.1. Model Oluşturulması ve İstatistiksel Analiz 112 6.3.6.2. YYM Optimizasyon Sonuç Analizleri 113 6.3.7. Adsorpsiyon İzoterminin Hesaplama Sonuçları 121 6.3.7.2. Freundlich İzotermi Hesaplama Sonuçları 125 6.3.8. Termodinamik Hesaplamaların Sonuçları 129 6.3.9. Scenedesmus sp. Mikroalglerinin Değişiminin Mikroskop Görüntüleri 132 6.4. Chlorella sp. Mikroalgleriyle Uranyumun Gideriminin Aerobik Deneylerin Sonuç ve Tartışmaları 134 6.4.1. Temas Süresinin Etkisi 136 6.4.2. Uranyumun Başlangıç Konsantrasyonunun Etkisi 138 6.4.3. Başlangıç pH Değerinin Etkisi 143 6.4.4. Sıcaklığın Etkisi 148 6.4.5. Mikroalg Konsantrasyonunun Etkisi 153 6.4.6. Uranyumun Adsorpsiyonunun Yanıt Yüzey Metodu (YYM) ile Optimizasiyonu …………………………………………………………………………………..155 6.4.6.1. Model Oluşturulması ve İstatistiksel Analiz 155 6.4.6.2. YYM Optimizasyon Sonuç Analizleri 156 6.4.7. Adsorpsiyon İzoterminin Hesaplama Sonuçları 164 6.4.7.1. Langmuir İzotermi Hesaplama Sonuçları 164 6.4.7.2. Freundlich İzotermi Hesaplama Sonuçları 168 6.4.8. Termodinamik Hesaplamalar 172 6.4.9. Chlorella sp. Mikroalglerin Deneylerde Mikroskop Görüntüleri 176 6.5. ‘Cytochrome C3’ Proteini ile Uranyum Giderimi 178 6.5.1. U(VI) Konsantrasyonunun Değişimi 179 6.5.2. İndirgenmiş ve Oksitlenmiş ‘Cytochrome C3’ Proteininin Konsantrasyonlarının Belirlenmesi 179 7. GENEL SONUÇ VE ÖNERİLER 183 7.1. Anerobik ve Aerobik Kesikli Reaktör Deneylerinin Sonuçlarının Kıyaslanması 183 7.2. Öneriler 193 KAYNAKLAR 207 ÖZGEÇMİŞ 228tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectUranyumunbiyoremediyasyonu
dc.subjectUranyuma Dayanıklı Karışık Mikroorganizmalar (U.D.K.M.)
dc.subjectSülfat İndirgeyen Bakteriler (S.İ.B.)
dc.subjectAnaerobik ve Aerobik Kesikli Reaktörler
dc.subjectScenedesmus Sp. ve Chlorella Sp. Mikroalgleri
dc.titleSudaki Uranyumun Biyoteknolojik Arıtımıtr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetBu çalışmada, insan ve çevre sağlığı açısından çok tehlikeli bir radyoaktif ve ağır metal olan uranyum ile kirlenmiş suların farklı biyoteknolojik yöntemlerle giderimi araştırılmıştır. İki bölüm olarak sürdürülen çalışmaların ilk kısmı bakteriler (karışık anaerobik/ sülfat indirgeyen) ile uranyum giderimi araştırılırken, ikinci kısımda mikroalglerle biyosorpsiyonu incelenmiştir. U.D.K.M. (uranyum indirgeyen karışık mikroorganizmalar) ile sudaki uranyumun anaerobik ortamda giderimi için öncelikle uranyuma dayanıklı mikroorganizmalar, 1 yıla yakın sürede farklı uranyum konsantrasyonu içeren besi ortamlarında yetiştirilerek mikroorganizmaların ortam koşullarına adaptasyonu sağlanmıştır. Sonrasında, elde edilen U.D.K.M. ile 3 farklı uranyum giderim deneyleri yapılmıştır. Birinci set deneylerde sudaki uranyumun giderimi pH 7’de ve üç farklı uranyum konsantrasyonlarıyla (5mg/L, 25mg/L ve 50mg/L) canlı ve öldürülmüş U.D.K.M. ile gerçekleştirilmiştir. Isıyla öldürülmüş U.D.K.M. olan örneklerde % 24 – 78 ve canlı U.D.K.M.’da ise % 40 – 79 uranyum giderimi elde edilmiştir. İkinci set deneylerde ise değişik ORP (100mV, 50mV, -50mV, -100mV) ve pH aralıklarında (4-10) anaerobik kesikli reaktör deneylerinde sudaki uranyumun (100mgU/L) giderimi gerçekleştirilmiştir. 3. günün sonrasında %78.1 ile % 96.3 arasında uranyum giderimi sağlanmıştır ve en yüksek giderim ORP -50mV ve pH 7’de gerçekleşmiştir. Üçüncü set deneylerde ise farklı uranyum konsantrasyonlarında ve ultra safsu ortamında uranyumun giderimi yapılmıştır. Bu deneyin sonucunda ise uranyumun giderimi %0.33 – 53 arasında olmuştur. Tüm deneyler dörtlü olarak tekrarlanmıştır. Sudaki uranyumun S.İ.B. (sülfat indirgeyen bakteriler) ile farklı redoks potansiyel (50mV, 100mV, -50mV and -100mV) ve pH (4; 7;10) şartlarında giderim deneyleri anaerobik kesikli reaktörlerde yapılmıştır. Tüm reaktörlerde uranyumun giderimi 3-10 gün içerisinde gerçekleşmiştir. Sonuçta yüksek uranyum giderim yüzdeleri (%95.36 - %99.9) elde edilmiştir. En yüksek giderim negatif (-50mV ve -100mV) redoks potansiyellerinde olup uranyumun 100mg/L başlangıç konsantrasyonundan 0,777mg/L (-50mV için) ve 0,115mg/L (-100mV için) kadar düştüğü belirlenmiştir. Deneyler dörtlü olarak tekrarlanmıştır. U(VI)’un S.İ.B. ile indirgenmesinin kinetik, termodinamik hesaplamaları ve VisualMINTEQ programının yardımıyla analizi yapılmıştır. İkinci bölümde mikroalgler kullanarak uranyum giderimi araştırılmıştır. Bu çalışmalarda Scenedesmus sp. ve Chlorella sp. mikroalg türleri kullanılmıştır. Sudaki uranyumun, Scenedesmus sp. mikroalglerle giderimi araştırılmıştır. Bu çalışmalarda 5mg/L, 10mg/L ve 15mg/L uranyum konsantrasyonları, farklı Scenedesmus sp. konsantrasyonlarında (41.54mg/L ve 115.94mg/L) ve canlı/ ısıyla öldürülmüş mikroalglerle yapılmıştır. Farklı fiziksel-kimyasal şartlar (pH, sıcaklık) altında ve 2 saatlik sürede gerçekleştirilmiştir. Elde edilen sonuçlarla farklı parametrelerin biyosorpsiyona etkileri araştırılmıştır. Box-Behnken programının yardımıyla üç boyutlu yüzeysel grafikler yardımıyla optimal şartlar bulunmuştur. Box-Behnken yöntemine göre giderimin 90-100% aralığında olduğu optimum koşullar pH 6-8 arası, sıcaklık 45⁰C, canlı mikroalgler, süre 55-62,4 dakika olarak belirlenmiştir. Buna ek olarak, ANOVA istatistiksel hesaplama yardımıyla uranyumun giderimini etkileyen önemli parametreler olarak pH, uranyumun başlangıç konsantrasyonu ve mikroalg konsantrasyonu olduğu belirlenmiştir. Chlorella sp. ile yapılan çalışmalarda iki farklı mikroalg konsantrasyonunda (71.61mg/L ve 282.42mg/L) uranyumun giderimi araştırılmıştır. Uranyumun giderimini etkileyen en önemli parametreler pH, uranyumun başlangıç konsantrasyonu ve zaman olarak belirlenmiştir. Optimal şartlarda (pH 6-8 arası, sıcaklık 45⁰C, canlı mikroalgler, süre 55-62,4 dakika) %95 üzeri giderim elde edilmiştir. Anaerobik bakterilerle uranyumun indirgenmesinin bazı çalışmalarda belirtildiği gibi ‘Cytochrome C’ proteini ile gerçekleşip gerçekleşmediğini belirlemek amacıyla kesikli reaktörlerde sudaki uranyumun bu protein ile giderimi için öncelikle laboratuvar şartlarında ekmek mayasından bu proteinin sentezi yapılmıştır. Deney sırasında indirgenmiş ve oksitlenmiş ‘Cytochrome C’’nın konsantrasyon değişimi her gün ölçülmüştür. Sonuçta ‘Cytochrome C’ proteininin oksitlenme derecesinin artmasının, indirgenme derecesinin azalmasıyla hemen hemen aynı olduğu gözlenmiştir. Sonuçlar incelendiğinde, uranyumun indirgenmesi ‘Cytochrom C’nın oksitlenmesiyle gerçekleştiğini, yani elektronların proteinden uranyuma aktarıldığı sonucuna varılmıştır.tr_TR
dc.contributor.departmentÇevre Mühendisliğitr_TR
dc.contributor.authorID10207791tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster