Basit öğe kaydını göster

dc.contributor.advisorAytaç, Sait Aykut
dc.contributor.advisorYazıhan, Nuray
dc.contributor.authorTabak, Riza
dc.date.accessioned2018-12-26T10:38:42Z
dc.date.issued2018-08-31
dc.date.submitted2018-08-06
dc.identifier.citation[1] Pamir, H.. Fermantasyon Mikrobiyolojisi, Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara, 1985. [2] Blandino, A., Al-Aseeri, M.E., Pandiella, S.S., Cantero, D., Webb, C., Cereal-Based Fermented Foods And Beverages, Food Research International, 36, 527-543, 2003. [3] İzmen, E.R., Silivri Yoğurdunun Yapılışı ve Terkibi Hakkında Araştırmalar, Yüksek Ziraat Enstitüsü Çalışmaları, 11, Ankara, 1935. [4] Yöney, Z., Fermente olmuş süt mamülleri teknolojisi, Ankara Üniversitesi Ziraat Fakültesi, Ankara, 1959. [5] Mesleki Eğitim ve Öğretim Sisteminin Güçlendirilmesi Projesi, Yoğurt, Gıda Teknolojisi, Ankara, 2008. [6] Metchnikoff, I.I., Lactic acid as inhibiting intestinal putrefaction. The Prolongation of Life: Optimistic Studies, The Knickerbocker Press, 161-183, 1908. [7] T.S.E., Mamul Gıdalar İhtisas Grubu-Yoğurt, TS 1330, 2006. [8] Tarım ve Köy İşleri Bakanlığı, Türk Gıda Kodeksi Fermente Süt Ürünleri Tebliği, Tebliğ No:2009/25, 2009. [9] Halkman, A.K., Taşkın, Y., AOÇ Yoğurtta Ne Yaptık?, 8. Gıda Mühendisliği Kongresi, 07-09 Kasım, Ankara, 2013. [10] Chandan, R.C., Gandhi, A., Shah, N.P., Yogurt: Historical background, health benefits, and global trade. Yogurt in Health and Disease Prevention, (ed: Shah N.P.), Academic Press, 4-29, 2017. [11] Gürbüz, M., Başkaya, C., Aksaray’da yoğurt tüketim alışkanlıkları anketi, III. Süt ve Süt Hayvancılığı Öğrenci Kongresi, 21 Mayıs, Aksaray, 2012. [12] Yalçın, A., Yoğurt ve ayran üretiminde probiyotik bakterilerin kullanımı, III. Süt ve Süt Hayvancılığı Öğrenci Kongresi, 21 Mayıs, Aksaray, 2012. [13] Morelli, L., Bacteria in yogurt and strain-dependent effects on gut health, Yogurt in Health and Disease Prevention, (ed:Shah N.P.), Academic Press, 395-410, 2017. [14] Özden, A., İnsan beslenmesinde yoğurdun yararlı etkileri, Güncel Gastroenteroloji, 13/4, 227-231, Aralık 2009. [15] Adolfsson, O., Medani, S.N., Russell, R.M., Yogurt and gut function, The American Journal of Clinical Nutrition, 80, 245-256, 2004. [16] Plessas, S., Bosnea, L., Alexopoulos, A., Bezirtzoglou, E., Potential effects of probiotics in cheese and yogurt production, Engineering in Life Sciences, 12 (4), 433-440, 2012. [17] Tamime, A.Y., Robinson, R.K., Nutritional value of yoghurt, Tamime and Robinson’s Yoghurt Science and Technology, Third Edition, CRC Press, 646-684, 2007. [18] Yurul, M., Saçık, R., Yoğurt üretimine yeni bir bakış, III. Süt ve Süt Hayvancılığı Öğrnci Kongresi, Aksaray, 358-365, 2012. [19] McCance, R.A., Widdowson, E.M., Milk and milk products. McCance and Widdowson’s The Composition of Foods, Sixth Edition, Royal Society of Chemistry, Cambridge and the Food Standards Agency, 83-124, 2002. [20] Yıldız, M.S., Baran, Z., Kalite fonksiyon göçerimi ve homojenize yoğurt üretiminde uygulaması, Ege Akademik Bakış, cilt:11, sayı:1, 59-72, 2011. [21] Güleş, H.K., Bülbül, H. Yenilikçilik-işletmeler için stratejik rekabet aracı, 1. Baskı, Nobel Yayınları, 2004. [22] Sofyalıoğlu, Ç., Tunail, İ., Kano modelinin kalite fonksiyon göçerimi planlama matrisinde kullanımı, Ege Akademik Bakış, cilt:12, sayı:1, 125-135, 2012. [23] Korkmaz, A.G., Yoğurt ve peynir için starter kültür üretimi, Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, 2011. [24] Leroy, F., De Vuyst, L., Lactic acid bacteria as functional starter cultures for the food fermentation industry, Trends in Food Science and Technology, 15, 67-78, 2004. [25] Yıldız, F., Overiew of yoghurt and other fermented dadiry products. Development and manufacture of yogurt and other functional dairy products, (ed:Yıldız, F.), CRC Press, 2010. [26] Lortal, S., Chapot‐Chartier, M.P., Role mechanisms and control of lactic acid bacteria lysis in cheese, International Dairy Journal, 15, 857-871, 2005. [27] Chandan, R.C., An overview of yogurt production and composition. Yogurt in Health and Disease Prevention, (ed: Shah, N.P.), Academic Press, 31-47, 2017. [28] Gürakan, G.C., Altay, N., Yogurt microbiology and biochemistry, Development and Manufacture of Yogurt and Other Functional Dairy Products, (ed:Yıldız, F.), CRC Press, 97-121, 2010. [29] Fedele, P., Seraglia, R., Battistotti, B., Pinelli, C., Traldi, P., Matrix-assisted laser desorption/ionization mass spectrometry for monitoring bacterial protein digestion in yogurt production, Journal of Mass Spectromety, 34, 1338-1345, 1999. [30] Beshkova, D., Simova, E., Frengova, G., Simov, Z., Production of flavour compounds by yogurt starter cultures, Journal of Industrial Microbiology and Biotechnology, 20, 180-186, 1998. [31] Ray, B., Microbial growth characteristics. Fundamental Food Microbiology, 57-65, CRC Press LLC, 2004. [32] Üstünol, Z., Dairy starter cultures. Dairy Microbiology and Biochemistry Recent Developments, (eds: Özer, B.H., Akdemir Evrendilek, G.), 39-67, Taylor & Francis Group, 2015. [33] Carr, F.J., Chill, D., Maida, N., The lactic acid bacteria: A literature survey, Critical Reviews Microbiology, 28(4), 281-370, 2002. [34] Klein, G., Pack, A., Bonaparte, C., Reuter, G., Taxonomy and physiology of probiotic lactic acid bacteria, International Journal of Food Microbiology, 41, 103-125, 1998. [35] Christensen, J.E., Dudley, E.G., Pederson, J.A., Steele, J.L., Peptidases and amino acid catabolism in lactic acid bacteria, Antonie Van Leewenhoek, 76, 217-246, 1999. [36] Kleerebezem, M. and Hugenholtz, J., Metabolic pathway engineering in lactic acid bacteria, Current Opinion in Biotechnology, 14, 232-237, 2003. [37] Hammes, W.P., Vogel, R.F., The genus Lactobacillus, The genera of lactic acid bacteria. The Lactic Acid Bacteria, Volume:2, (eds: Wood, B.J.B., Holzapfel, W.H.), Chapman & Hall, 19-55, 1995. [38] Farrow, J.A.E., Collins, M.D., DNA base composition, DNA–DNA homology and longchain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius, Journal of General Microbiology, 130, 357-362, 1984. [39] Schleifer, K.H., Ehrmann, M., Krusch, U., Neve, H., Revival of the species Streptococcus thermophilus, Systematic and Applied Microbiology, 14 (4), 386–388, 1991. [40] Axelsson, L., Lactic acid bacteria: classification and physiology. Lactic Acid Bacteria: Microbiological and Functional Aspects, (Eds: Salminen, S., Wright, A.V, Ouwehand, A.), CRC Press, 1-66, 2004. [41] Capela, P., Hay, T.K.C. and Shah, N.P., Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt, Food Research International, 39, 203–211, 2006. [42] Anonim, Scanning electron micrograph of S.thermophilus by Dennis Kunkel Microscopy, https://microbewiki.kenyon.edu/index.php/File:Streptococcus_ thermophilus.jpg (Eylül, 2017). [43] Marshall, V.M.E., Fermented milks and their future trends: microbiol aspects, Journal of Dairy Research, 54, 559-574, 1987. [44] Tamime, A. Y., Deeth, B.C., Yoghurt: Techcnology and biochemistry, Journal of Food Protection, 43 (12), 939-977, 1980. [45] Davidson, B.E., Kordias, N., Dobos, M., Hillier, A.J., Genomic organization of lactic acid bacteria, Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 70, 161-183, 1996. [46] Mercenier, A., Molecular genetics of Streptococcus thermophilus, Federation of Europan Microbiological Societies (FEMS) Microbiological Reviews, 87, 61-78. 1990. [47] Holt, J.G., Bergey’s Manual of Determinative Bacteriology (Paperback), 9th edition, Williams & Wilkins, 1994. [48] Anonim, Scanning electron micrograph of L.bulgaricus at Utah State University, https://microbewiki.kenyon.edu/index.php/File:Lactobacillus_bulgaricus.jpg (Eylül, 2017). [49] Ray, B., Microorganisms used in food fermentation, Fundamental Food Microbiology, 125-135, 2004. [50] Stiles, M.E. and Holzapfel, W.H., Lactic acid bacteria of foods and their current taxonomy, International Journal of Food Microbiology, 36, 1-29, 1997. [51] Robinson, R.K., Fermented milks, yogurt, Encyclopedia of Food Microbiology, (eds: Robinson, R.K., Batt, C.A., Patel, P.D.), Academic Press, London, 784-791, 2000. [52] Davidson, B.E., Kordias, N., Dobos, M., Hillier, A.J., Genomic organization of lactic acid bacteria, Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 70, 161-183, 1996. [53] Wang, T.T. and Lee, B.H., Plasmids in Lactobacillus, Critical Reviews in Biotechnology, 17(3), 227-272, 1997. [54] Anonim, Bakteri İdentifikasyon Testleri, http://www.dergi.dirimbilim.net/index.php?option=com_content&view=article&id=84&Itemid=113, (Eylül, 2017). [55] Eser, Ö., Moleküler tanı testlerinin direnç tayininde kullanımı: Gram negatif bakteriler için hızlı moleküler tanı yöntemleri, ANKEM Dergisi, 26(2), 86-91, 2012. [56] Başaran, E., Aras, S., Cansaran-Duman, D., Genomik, proteomik, metabolomik kavramlarına genel bakış ve uygulama alanları,Türk Hijyen ve Deneysel Biyoloji Dergisi, 67 (2), 85-96, 2010. [57] Wassie, M. and Wassie, T., Isolation and identification of lactic acid bacteria from raw cow milk, International Journal of Advanced Research in Biological Science, 3(8), 44-49, 2016. [58] Simmonds, P., Shulman, G., Stembridge, C., Organic analysis by pyrolysis-gas chromotography-mass spectrometry a candidate experiment fort the biological exploration of Mars, Journal of Chromotographic Science, 7, 36-41, 1969. [59] Simmonds, P., Whole microorganisms studied by pyrolysis-gas chromatography–mass spectrometry: significance for extraterrestrial life detection experiments, Applied Microbiology, 20, 567-572, 1970. [60] Anhalt, J.P., Fenselau, C., Identification of bacteria using mass spectrometry, Analytical Chemistry, 47 (2), 219-225, 1975. [61] Heller, D., Cotter, R., Fenselau, C., Profiling of bacteria by fast atom bombardment mass spectrometry, Analytical Chemistry, 59, 2806-2809, 1987. [62] Holland, R., Wilkes, J., Rafii, F., Sutherland J., Persons C., Voorhees, K., Lay J., Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-fligh mass spectrometry, Rapid Communications in Mass Spectrometry, 10, 1227-1232, 1996. [63] Krishnamurthy, T., Ross, P., Rapid identification of bacteria by direct matrixassisted laser desorption/ionization mass spectrometric analysis of whole cells, Rapid Communications in Mass Spectrometry, 10, 1992-1996, 1996. [64] Toh-Boyo, G., Wulff, S., Basile, F., Comparison of sample preparation methods and evaluation intersample reproducibility in bacteria MALDI-TOF profiling, Analytical Chemistry, 84, 9971–9980, 2012. [65] Soner, Yılmaz S., Serhat, Duyan S., Artuk, C., Diktaş, H., Mikrobiyolojik tanımlamada MALDI-TOF MS uygulamaları, TAF Preventive Medicine Bulletin, 13(5), 2014. [66] Özcan, N., Ezin, Ö., Akpolat, N., Bozdağ, H., Mete, M., Gül, K., Klinik örneklerde saptanan Candida türlerinin MALDI-TOF MS ile tiplendirilmesi, Dicle Tıp Dergisi, 43 (3), 390-394, 2016. [67] Fedele, P., Seraglia, R., Battistotti, B., Pinelli, C., Traldi, P., Matrix-assisted laser desorption/ionization mass spectrometry for monitoring bacterial protein digestion in yogurt production, Journal of Mass Spectromety, 34, 1385-1388, 1999. [68] Teramoto, K., Sato, H., Sun, L., Torimura, M. and Tao, H., A simple intact protein analysis by MALDI-MS for characterization of ribosomal proteins of two genome-sequenced lactic acid bacteria and verification of their amino acid sequences, Journal of Proteome Research, 6, 3899-3907, 2007. [69] Angelakis, E., Million, M., Henry, M., Raoult, D., Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF Mass Spectrometry, Journal of Food Science, 76 (8), 568-572, 2011. [70] Doan, N.T.L.,Van Hoorde, K., Cnockaert, M., De Brandt, E., Aerts, M., Le Thanh B., Vandamme, P., Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam, Letters in Applied Microbiology, 4, 265-273, 2012. [71] Dušková, M., Šedo, O., Kšicová, K., Zdráhal, Z., Karpíšková, R., Identification of lactobacilli isolated from food by genotypic methods and MALDI-TOF MS, International Journal of Food Microbiology, 159, 107-114, 2012. [72] Dec, M., Urban-Chmiel, R., Gnat, S., Puchalski, A., Wernicki, A., Identification of Lactobacillus strains of goose origin using MALDI-TOF mass spectrometry and 16S-23S rDNA intergenic spacer PCR analysis, Research in Microbiology, 165, 190-201, 2014. [73] Günel, T., Gen anlatımının kantitatif analizi “Real-Time PCR”, Türkiye Klinikleri Tıp Bilimleri Dergisi, 27 (5), 763-767, 2007. [74] Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonak, J., Lind K., The real-time polymerase chain reaction, Molecular Aspects in Medicine, 27 (2-3), 95-125, 2006. [75] Anonim, Is the primer used for real tine pcr different from that used in conventional pcr, https://www.researchgate.net/post/Is_the_primer_used_for_real_time_pcr_different_from_that_used_in_conventional_pcr (Temmuz, 2018). [76] Anonim, What is a Ct value, https://bitesizebio.com/24581/what-is-a-ct-value/ (Temmuz, 2018). [77] Dubernet, S., Desmasures, N., Guéguen, M., A PCR-based method for identification of lactobacilli at the genus level, FEMS Microbiology Letters, 214, 271-275, 2002. [78] Tabasco, R., Paarup, T., Janer, C., Peláez, C., Requena, T., Selective enumeration and identification of mixed cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L.acidophilus, L.paracasei subsp. paracasei and Bifidobacterium lactis in fermented milk, International Dairy Journal,17, 1107-1114, 2007. [79] Furet, J.P., Quénée, P., Tailliez, P., Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR (Jouy-en-Josas Cedex, France), International Journal of Food Microbiology, 97, 197-207, 2004. [80] FAO, WHO, Codex Standart for milk and milk products, 2nd edition, Codex Alimentarius, Codex Stan 243-2003, 2011. [81] Josephson, K.L., Yerba, C.Q., Pepper, I.L., Polymerase chain-reaction detection of nonviable bacterial pathogens, Applied and Environmental Microbiology, 59, 3513-3515, 1993. [82] Nocker, A., Sossa-Fernandez, P., Burr, M.D., Camper, A.K., Use of propidium monoazide for live/dead distinction in microbial ecology, Applied and Environmental Microbiology, 73, 5111-5117, 2007. [83] García-Cayuela, T., Tabasco, R., Peláez, C., Requena T., Simultaneous detection and enumeration of viable lactic acid bacteria and bifidobacteria in fermented milk by using propidium monoazide and real-time PCR, International Dairy Journal, 19, 405-409, 2009. [84] Herbel, S.R., Lauzat, B., von Nickisch-Rosenegk, M., Kuhn, M., Murugaiyan, J., Wieler, L.H., Guenther, S., Species-specific quantification of probiotic lactobacilli in yoghurt by quantitative real-time PCR, Journal of Applied Microbiology, 115, 1402-1410, 2013. [85] Kao, Y.T., Liu, Y.S., Shyu, Y.T., Identifiation of Lactobacillus spp. in probiotic products by real-time PCR and melting curve analysis, Food Research International, 40, 71-79, 2007. [86] Kántor, A., Kluz, M., Puchalski, C., Terentjeva, M., Kačániová, M., Identification of lactic acid bacteria isolated from wine using real-time PCR, Journal of Environmental Science Health, 51(1), 52-6. 2016. [87] Lick, S., Keller, M., Bockelmann, W., Heller, K.J., Rapid İdentification of Streptococcus thermophilus by primer-specific PCR amplification based on its lacZ gene, Systematic and Applied Microbiology, 19, 74-77, 1996. [88] Giraffa, G., Paris, A., Valcavi, L., Gatti, M., Neviani, E., Genotypic and phenotypic heterogeneity of Streptococcus thermophilus strains isolated from dairy products, Journal of Applied Microbiology, 91, 937-943, 2001. [89] Michaylova, M., Minkova, S., Kimura, K., Sasaki T., Isawa K., Isolation and characterization of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus from plants in Bulgaria, FEMS Microbiol Lett, 269, 160-169, 2007. [90] Vélez, M.P., Hermans, K., Verhoeven, T.L.A., Lebeer, S.E., Vanderleyden, J. and De Keersmaecker, S.C.J., Identification and characterization of starter lactic acid bacteria and probiotics from Columbian dairy products, Journal of Applied Microbiology, 103, 666-674, 2007. [91] Del Campo, R., Bravo, D., Cantón, R., Ruiz-Garbajosa, P., García-Albiach, R., Montesi-Libois, A., Yuste, F.J., Abraira, V., and Baquero F., Scarce Evidence of Yogurt Lactic Acid Bacteria in Human Feces after Daily Yogurt Consumption by Healthy Volunteers, Applied and Environmental Microbiology, 71 (1), 547-549, 2005. [92] RoushanZadeh, S., Eskandari, M.H., Shekarforoush, S.S., Hosseini, A., Phenotypic and genotypic diversity of dominant lactic acid bacteria isolated from traditional yoghurts produced by tribes of Iran, Iranian Journal of Veterinary Research, 2014, 15 (4), 49, 347-352, 2014. [93] Zülal, A., , İnsan Genomu, kalıtım şifresinin peşinde 136 yıl, Tübitak Yayınları, Mart; 5-11, 2001. [94] Klug, W.S., Cummings, M.R., Spencer, C.A., Concept of Genetics, 8th edition, Pearson Prentice Hall, 2006. [95] Bölükbaşı, E., Aras, E.S., Third generation DNA sequencing technologies, International Journal of Scientific and Technological Research, 1 (3), 2015. [96] Klaenhammer, T.R., Ahn, C., Fremaux, C., Milton, K., Moleculer properties of Lactobacillus bacteriocins, Bacteriocins, Microcins and Lantibiotics, (Eds: James, R., Lazdunski, C., Pattus, F.), Springer-Verlag, 37-58, 1992. [97] Kumar, B.R., DNA representation, DNA Sequencing – Methods and Applications, (ed: Munshi, A.), InTech, 3-14, 2012. [98] Liu, W., Bao, Q., Jirimutu, Qing M, Siriguleng, Chen, X., Sun, T., Li, M., Zhang, J., Yu, J., Bilige, M., Sun, T., Zhang, H., Isolation and identification of lactic acid bacteria from Tarag in Eastern Inner Mongolia of China by 16S rRNA sequences and DGGE analysis, Microbiological Research, 167, 110-115, 2012. [99] Moraes, P.M., Perin, L.M., Júnior, A.S., Nero, L.A., Comparison of phenotypic and molecular tests to identify lactic acid bacteria, Brazilian Journal of Microbiology, 44, 1, 109-112, 2013. [100] Akoğlu, A., Yaman, H., Coşkun, H., Sarı, K., Mengen peynirinden laktik asit bakterilerinin izolasyonu, moleküler tanımlanması ve bazı starter kültür özelliklerinin belirlenmesi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21 (2), 453-459, 2017. [101] Sunil, N., Vora, D.J., Analysis of 16S rRNA gene of lactic acid bacteria isolated from curd and raw milk, International Journal of Science and Research , 5 (5), 2016. [102] Anonim, Antibiyotik Direnci, http://www.akilciilac.gov.tr/?page_id=826, (Eylül, 2017). [103] Ammor, M.S., Flórez, A.B., van Hoek, A.H.A.M., de los Reyes-Gavilán, C.G., Aarts, H.J.M., Margolles, A., Mayo, B., Molecular Characterization of Intrinsic and Acquired Antibiotic Resistance in Lactic Acid Bacteria and Bifidobacteria, Journal of Molecular Microbiology Biotechnology, 14, 6-15, 2008. [104] Ouoba, L.I., Lei, V., Jensen, L. B., Resistance of potential probiotic lactic acid bacteria and bifidobacteria of African and European origin to antimicrobials: determination and transferability of the resistance genes to other bacteria, International Journal of Food Microbiology, 121, 217-224, 2008. [105] Danielsen, M. and Wind, A., Susceptibility of Lactobacillus spp. to antimicrobial agents, International Journal of Food Microbiology, 82, 1-11, 2003. [106] Temmerman, R., Pot, B., Huys, G., Swings, J., Identification and antibiotic susceptibility of bacterial isolates from probiotic products, International Journal of Food Microbiology, 81, 1-10, 2003. [107] Zhou, N., Zhang, J.X., Fan, M.T., Wang, J., Guo, G., Wei, X.Y., Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts, Journal of Dairy Science, 95, 4775-4783, 2012. [108] D'Aimmo, M.R., Modesto, M., Biavati, B., Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. isolated from dairy and pharmaceutical products, International Journal of Food Microbiology, 115, 35-42, 2007. [109] Çelik, H., Durak, Y., Uysal, A., Bazı ticari ve ev yapımı yoğurtlardan izole edilen laktik asit bakerilerinin antibiyotik duyarlılıkları, Fen Fakültesi Fen Dergisi, 42 (2), 149-160, 2016. [110] Alp, D., Öner, Z., Bazı laktik asit bakterilerinin antibiyotik dirençliklerinin ve aroma maddeleri oluşturma özelliklerinin belirlenmesi, Gıda, 39 (6), 331-337, 2014. [111] Dykuizen, D.E., Santa Rosalia revisited: Why are there so many species of bacteria?, Antonie Van Leeuwenhoek, 73, 25-33, 1998. [112] Auwerx, J., The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation, in Experientia, 47 (1), 22-31,1991. [113] Bosshart, H., Heinzelmann, M., THP-1 cells as a model for human monocytes, Annals of Translational Medicine, 4(21), 438, 2016. [114] Anonim, Cytokine Release Assays Tests for Leishmaniasis Transplant Recipients, https://www.labmedica.com/immunology/articles/294761241/cytokine-release-assays-tests-for-leishmaniasis-in-transplant-recipients.html (Kasım, 2017). [115] Mandal, A., Viswanathan, C., Natural killer cells: In health and disease, Hematology Oncology Stem Cell Therapy, 8(2), 47-55, 2015. [116] Deniz, G., T, B, NK Hücrelerin Değerlendirmesinde Pratik Yaklaşımlar, http://www.guncelpediatri.com/makale_869/T-B-Nk-Hucrelerin-Degerlendirilmesinde-Pratik-Yaklasimlar (Kasım, 2017). [117] Anonim, Study Suggests Refined Donor Selection Could Improve Outcomes of Bone Marrow Transplantation in Leukemia, https://www.mskcc.org/blog/study-suggests-refined-donor-selection-could-improve-outcomes-bone-marrow-transplantation-leukemia (Kasım, 2017). [118] Dembic, Z., Common features about cytogines. The Cytokines of the Immune System The Role of Cytokines in Disease Related to Immune Response, Academic Press, 1-14, 2015. [119] Chowdhury, I., Bhat, G.K., Cell Biology Research Progress Series Tumor Necrosis Factor, Tumor Necrosis Factor (TNF)–From Bench to Bed Side (ed: Rossard, T.P.), Nova Science Publishers, 1-48, 2009. [120] Haque, S.J., Sharma, P., Interleukins and STAT Signaling, Interleukins Vitamins and Hormones, (ed:Litwack, G.), Academic Press, California,165-206, 2006. [121] Akdis, M., Burgler, S., Crameri, R., Eiwegger, T., Fujita, H., Gomez, E., Klunker, S., Meyer, N., O'Mahony, L., Palomares, O., Rhyner, C., Ouaked, N., Schaffartzik, A., Van De Veen, W., Zeller, S., Zimmermann, M., Akdis C.A., Interleukins, from 1 to 37, and interferon-ɣ: Receptors, functions, and roles in diseases, The Journal of Allergy and Clinical Immunology, 127(3), 701-721, 2011. [122] LeBlanc, A.M., Del Carmen, S., Zurita-Turk, M., Rocha, C.S., Van de Guchte, M., Azevedo, V., Miyoshi, A. and LeBlanc, J.G., Importance of IL-10 Modulation by Probiotic Microorganisms in Gastrointestinal Inflammatory Diseases, International Scholarly Research Network Gastroenterology, 2011, 11 pages, 2010. [123] Zdanov, A., Structure and Function of IL-10 and the IL-10 Receptor, Medical Intelligence Unit Interleukin-10, (ed: Marincola, F.M.), Landes Bioscience, 1-10, 2006. [124] Miettinen, M., Matikainen, S., Vuopio-Varkila, J., Pirhonen, J., Varkila, K., Kurimoto, M., and Julkunen, I., Lactobacilli and Streptococci Induce Interleukin-12 (IL-12), IL-18, and Gamma Interferon Production in Human Peripheral Blood Mononuclear Cells, Infection and Immunity, 66 (12), 6058-6062, 1998. [125] Perdigón, G., Galdeano, C.M., Valdez, J.C., and Medici, M., Interaction of lactic acid bacteria with the gut immune system, European Journal of Clinical Nutrition, 56 (4), 21-26, 2002. [126] Ménard, S., Candalh, C., Bambou, J.C., Terpend, K., Cerf-Bensussan, N., Heyman, M., Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport, Gut, 53, 775-775, 2004. [127] Yazıhan, N., Karakurt, Ö., Ataoğlu, H., Erythropoietin Reduces Lipopolysaccharide-Induced Cell Damage and Midkine Secretion in U937 Human Histiocytic Lymphoma Cells, Advances in Therapy, 25 (5), 502-514, 2008. [128] Anonim, http://www.dynebio.co.kr/yc/shop/dw.php?fn=1402000095%2F11796828001.pdf (Şubat, 2018). [129] Shipley, G.L., An introduction to real-time PCR. Real-time PCR, (ed: Dorak, M.T.), Taylor & Francis Group, 1-37, 2006. [130] Anonim, https://biochimie.umontreal.ca/wp-content/uploads/sites/37/2015/11/LC480ProbesMasterguide.pdf (Şubat, 2018). [131] Anonim, https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Roche/Bulletin/1/04683633001bul.pdf (Şubat, 2018). [132] Neuohoff, N., Oumeraci, T., Wolf, T., Kollewe, K., Bewerunge, P., Neumann, B, et al., Monitoring CSF Proteome Alterations in Amyotrophic Lateral Sclerosis: Obstacles and Perspectives in Translating a Novel Marker Panel to the Clinic, Public Library of Science, 7(9), e44401, 2012. [133] Mercanoğlu, B., Griffiths, M.W., Combination of immunomanetic separation with real-time PCR for rapid detection of Salmonella in milk, ground beef, and alfalfa sprouts, Journal of Food Protection, 68, 3, 557-561, 2005. [134] Anonim, https://www.protocolsonline.com/recipes/phosphate-buffered-saline-pbs/ (Şubat, 2018). [135] Taban, B., İmmünomanyetik Ayırma-Polimeraz Zincir Reaksiyonu (İMA-PZR) Yönteminin Uygulaması ile Tavuk Etlerinde Salmonella spp. Belirlenmesi, Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2007. [136] Anonim, flow chart for real time PCR or quantitive PCR, http://www.bio-rad.com/webroot/web/images/lse/products/pcr_amplification_kits/product_overlay_content/global/lse_flowchart_pcr_realtime.jpg, (Temmuz, 2018). [137] Anonim, 16S Ribosamal DNA Sequence Analysis, https://www.slideshare.net/abduldvm/16s-ribosomal-dna-sequence-analysis, (Temmuz, 2018). [138] Anonim, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Clinical and Laboratory Standards Institute, CLSI document M7-A7, 29 (2), 2012. [139] Anonim, Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement, Clinical and Laboratory Standards Institute, CLSI document M100-S21, 31 (1), 2011. [140] Andrews, J.M., Determination of minimum inhibitory concentrations, Journal of Antimicrobial Chemotherapy, 48, Suppl. S1, 5-16, 2001. [141] European Food Safety Authority, Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance, 2012. [142] Niğdelioğlu, S., Laktikasit bakterilerinin antiproliferatif, antigenotoksik, antiinflamatuvar etkilerinin belirlenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2013.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/5534
dc.description.abstractThe fermentation process of starter cultures is one of the most important factors of chemical, physical and biological changes that occur during the transformation of milk into yoghurt. In this thesis, it was aimed to identify genotypic/proteomic and some characteristics of starter cultures, which will be used for production of high- nutritional-value functional foods with high economic and social benefits. For this purpose 39 local yoghurt samples produced by traditional methods in Bolu, Mersin, Amasya, Isparta and Kayseri regions, were collected and inoculated and into the agar media. After incubation period 283 Streptococcus salivarius subsp. thermophilus and 101 Lactobacillus delbrueckii subsp. bulgaricus suspected isolates have been isolated. These colonies were stored for further analysis but 153 S. thermophilus and 28 Lb. bulgaricus suspected isolates were reactivated. 53 S. thermophilus, 23 Lb. bulgaricus and 49 S. thermophilus, 22 Lb. bulgaricus strains were identified according to the results of MALDI-TOF MS and real-time PCR analyses, respectively. Strains identified by MALDI-TOF MS and real-time PCR were subjected to 16S rRNA sequence analysis and 1 S. thermophilus, 9 Lb. bulgaricus were confirmed. A total of 61 S. thermophilus and 21 Lb. bulgaricus strains identified by MALDI-TOF MS or/and real-time PCR were used in order to determine their sensivity to antibiotics such as streptomycin, gentamicin, penicillin G, chloramphenicol, linkomycin, chlortetracycline, tetracycline, ampicillin and roxithromycin with the minimal inhibitor concentration (MIC) by macro dilution tube method. The results showed that the highest sensitivity was found to be 98.4% and 81% of the strains of S. thermophilus and Lb. bulgaricus against ampicillin, respectively. All strains of S. thermophilus were resistant to gentamicin while Lb. bulgaricus strains were resistant to streptomycin and chloramphenicol. It was concluded that 26.2% of S. thermophilus and 42.9% of Lb. bulgaricus strains were sensitive to tetracycline. One S. thermophilus (St27) and 7 Lb. bulgaricus (Lb25, Lb29, Lb46, ML4-1, ML7-6, ML9-5 ve ML9-6) isolates which were identified with three methods, have been researched their effect on the natural immune system, allergic response and immune system cells. In the study using THP-1 macrophages and K562 (natural killer cells) cell lines; TNF-α, IL-8 and IL-10 cytokine responses were evaluated after stimulation of cells with selected LAB. Increase in TNF-α and IL-8 cytokine levels in the interaction of S. thermophilus isolate with K562 cell line and increase in IL-8 level and decrease in IL-10 cytokine level in interaction with THP-1 cell line were detected. The obtained data showed that the two study results are compatible with each other. Besides that, it has been determined that the selected LAB isolates are different from the responses they stimulate in both cell types and increase the proliferation of monocytes and natural killer cells. A decrease in the level of IL-8 cytokine was detected in some LABs, TNF-α cytokine levels in THP-1 monocytic cell lines and 2 LABs isolates in K562 natural killer cell line. The interaction of ML7-6 and ML4-1 isolates with the THP-1 cell line leads to an increase in IL-10 cytokine levels. The obtained results, which suggest that these four isolates have promoting effects of the immune system and suppress the allergic response.tr_TR
dc.description.sponsorshipBilim, Sanayi ve Teknoloji Bakanlığı/TÜBİTAK tarafından desteklenen “Geleneksel Yoğurt Örneklerinden İzole Edilen Lactobacillus delbrueckii subsp. bulgaricus ve Streptococcus thermophilus Suşlarının Endüstriyel Yoğurt Üretimine Uygunluğunun Saptanarak Starter Kombinasyonlarının Geliştirilmesi” isimli ve 112D052 kodlu SAN-TEZ projesi tarafından desteklenmiştir.tr_TR
dc.description.tableofcontentsÖZET ………………………………………………….…………...…………………….....i ABSTRACT ..……………………………………………………………………………...iii TEŞEKKÜR ………………………………………….………………………...……….....v İÇİNDEKİLER ...…………………………………………………………..………………vi ÇİZELGELER ..…………………………………….……………………………………viii ŞEKİLLER …..……………………………………….……………………………………x SİMGELER VE KISALTMALAR ..……………………………………………………..xiii 1.GİRİŞ ...…...……………………………………………………………………………..1 2.LİTERATÜR ÖZETİ ……………………………………………………………………5 3.MATERYAL VE METOT ...………………………….………………………………..41 3.1.Materyal ..……………………………………………………….…………………...41 3.1.1. Yoğurt Örnekleri ...………………………………………….……...…………….41 3.1.2. Besiyeri, Kimyasallar ve Antibiyotikler ……………………………………...….41 3.1.3. DNA İzolasyonu ..…………………………………………………….…………..43 3.1.4.Gerçek-zamanlı PZR ile Tanımlama ……………………………………………44 3.1.5. Antibiyotik Dirençlilik Testi ………………………………………………………46 3.2.Metot ....………………………………………………………………………………47 3.2.1. Besiyerlerinin Hazırlanması ...……………………………………………….....47 3.2.2.Streptococcus thermophilus ve Lactobacillus bulgaricus Bakterilerinin İzolasyonu ve Stok Kültür Hazırlanması ………………………………………………47 3.2.3. Laktik Asit Bakterilerinin Tanımlanması ……………………………………….48 3.2.4. İzolatların MALDI-TOF MS ile Tanımlanması …………………………………49 3.2.5. LAB Kültürlerinden DNA İzolasyonu ……………………………………………51 3.2.5.1. Lizozim (liyofilize formdan) Hazırlanması …………………………………..51 3.2.5.2. Lambda Buffer Hazırlanması …………………………………………………52 3.2.5.3. PBS (Fosfat Tamponlu Su) Hazırlanması……………………………………52 3.2.6. İzolatların Gerçek-Zamanlı PZR ile Tanımlanması …………………………..54 3.2.6.1. Primer Seçimi ………………………………………………………….……….56 3.2.6.2. Gerçek-zamanlı PZR Master Mix Hazırlanması………………………..……56 3.2.6.3. Örnek DNA’nın Eklenmesi ……………………………………………...….…56 3.2.7. Sekans Analizi ……………………………………………………………………57 3.2.8. %6.5 NaCI Testi ……………………………………………………….…………58 3.2.9. Laktik Asit Bakterilerinin Antibiyotik Dirençliliklerinin Belirlenmesi…………..58 3.2.9.1. Magnezyum Stok Çözelti Hazırlanması ……………………………………..58 3.2.9.2. Kalsiyum Stok Çözelti Hazırlanması …………………………………………59 3.2.9.3. Katyon Ayarlı Müller Hinton Broth Hazırlanması……………………………59 3.2.9.4. Antibiyotik Stok Çözeltisinin Hazırlanması ………………………………….59 3.2.10. Hücrelerin Hazırlanması ve Deney Protokolü……..………………………....63 3.2.11. THP-1 Makrofaj Hücre Kültürü ………………………………………………..63 3.2.12. THP-1 Hücrelerinin Makrofajlara Farklılaşmasının Belirlenmesi ………….64 3.2.13. Sitokin Düzeylerinin Ölçümü …………………………………………………..64 4. BULGULAR VE TARTIŞMA ………………………………………………………...65 4.1. Örnekleme ve İzolasyon …………………………………………………………..65 4.2. MALDI-TOF MS ile Tanımlama …………………………………………………..70 4.3. %6.5 NaCI Testi ……………………………………………………………………75 4.4. Gerçek-Zamanlı PZR ile Tanımlama …………………………………….…….…76 4.5. 16S rRNA Sekans Analizi ile Tanımlama ………………………………………..79 4.6. Antibiyotik Duyarlılık Testi …………………………………………………………90 4.7. İmmün Sistem Yanıtları …………………………………………………………..102 4.8. İzolatların NK Hücreleri ve THP-1 Makrofajları ile Etkileşimi Sonuçları………103 4.9. Sitokin Yanıtları …………………………………………………………………...111 5. SONUÇLAR……………………………………………………………………........117 KAYNAKLAR……………………………………………………………………..….…120 EKLER……………………………………………………………………………....…..134 ÖZGEÇMİŞ…………………………………………………………………….…….…152tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectMoleküler Tanımlama
dc.subjectAntibiyotik Direnci
dc.subjectDoğal Katil Hücre
dc.subjectSitokin
dc.subjectİmmun Sistem
dc.subjectLaktik Asit Bakterileri
dc.subjectLaktik Asit Bakterileri
dc.titleGeleneksel Yoğurtlardan Starter Bakterilerin İzolasyonu, Moleküler Tanımlaması Ve Bazı Özelliklerinin Belirlenmesitr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetSütün yoğurda dönüşümü sırasında meydana gelen kimyasal, fiziksel ve biyolojik değişikliklerin en önemli etkenlerinden biri kullanılan starter kültürlerin fermantasyon sürecidir. Bu tez çalışmasında, ekonomik ve toplumsal faydanın, besinsel kalitenin üst düzeyde olduğu ürünlerin elde edilmesinde kullanılacak starter kültürlerin, yerel kaynaklardan izole edilerek, genotipik/proteomik olarak tanımlanması ve bazı özelliklerinin belirlenmesi amaçlanmıştır. Bolu, Mersin, Amasya, Isparta ve Kayseri bölgelerinde, geleneksel yöntemlerle üretilen 39 yoğurt örneğinden besiyerlerine yapılan ilk ekimde 283 Streptococcus salivarius subsp. thermophilus, 101 Lactobacillus delbrueckii subsp. bulgaricus şüpheli kolonisi elde edilmiştir. Daha sonra incelenmek üzere tekrar besiyerlerinde aktive edilen kolonilerden 153 S. thermophilus ve 28 Lb. bulgaricus şüpheli izolatı tespit edilmiştir. MALDI-TOF MS ile yapılan analizlere göre 53 S. thermophilus, 23 Lb. bulgaricus, gerçek-zamanlı PZR ile yapılan analiz sonuçlarına göre 49 S. thermophilus, 22 Lb. bulgaricus suşu tanımlanmıştır. Daha sonra MALDI-TOF MS ve gerçek-zamanlı PZR ile aynı sonucu veren suşlar, 16S rRNA sekans analizine gönderilmiş, 1 S. thermophilus, 9 Lb. bulgaricus belirlenmiştir. MALDI-TOF MS ve/veya gerçek-zamanlı PZR ile tanımlanan toplam 61 S. thermophilus ve 21 Lb. bulgaricus suşunun, streptomisin, gentamisin, penisilin G, kloramfenikol, linkomisin, klortetrasiklin, tetrasiklin, ampisilin ve roksitromisin antibiyotiklerine karşı duyarlılıkları, makro dilüsyon tüp yöntemi ile minimal inhibitör konsantrasyonu (MİK) saptanarak tespit edilmiştir. Analiz sonuçlarına göre, en yüksek duyarlılık S. thermophilus ve Lb. bulgaricus suşlarının sırasıyla %98.4’ü ve %81’i tespit edilerek ampisiline karşı olduğu bulunmuştur. S. thermophilus suşlarının hepsinin gentamisine, Lb. bulgaricus suşlarının ise streptomisin ve kloramfenikole dirençli olduğu saptanmıştır. Tetrasikline S. thermophilus ve Lb. bulgaricus suşlarının sırasıyla %26.2’sinin ve %42.9’unun duyarlı olduğu sonucuna ulaşılmıştır. Üç yöntemle tanımlaması yapılan, 1 S. thermophilus (St27) ve 7 Lb. bulgaricus (Lb25, Lb29, Lb46, ML4-1, ML7-6, ML9-5 ve ML9-6) izolatının doğal bağışıklık sistemine, alerjik yanıta ve immun sistem hücrelerine etkisi araştırılmıştır. THP-1 makrofaj ve K562 (doğal katil hücreler) hücre dizilerinin kullanıldığı çalışmada; seçili LAB ile hücrelerin uyarımı sonrası TNF-α, IL-8 ve IL-10 sitokin yanıtları değerlendirilmiştir. S. thermophilus izolatının, K562 hücre dizisi ile etkileşiminde TNF-α ve IL-8 sitokin düzeyinde artış, THP-1 hücre dizisi ile etkileşiminde ise IL-8 sitokin düzeyinde artış ve IL-10 sitokin düzeyinde azalış tespit edilmiştir. Elde edilen veriler, iki çalışma sonucunun birbiriyle uyumlu olduğunu göstermiştir. Bunun yanı sıra, seçilen LAB izolatlarının her iki hücre tipinde uyardıkları cevapların farklı olduklarını, monositer ve doğal katil hücrelerinde proliferasyonu arttırdıkları belirlenmiştir. Bazı LAB’nin, THP-1 monositer hücre dizilerinde TNF-α sitokin düzeyinde, 2 LAB’si izolatının ise K562 doğal katil hücre dizisinde IL-8 sitokin düzeyinde düşüş tespit edilmiştir. ML7-6 ve ML4-1 izolatlarının THP-1 hücre dizisi ile etkileşiminde ise IL-10 sitokin düzeyinde artışa neden olmuştur. Elde edilen sonuçlar, bu dört izolatın immun sistemi destekleyici etkileri olduğu ve alerjik yanıtı baskıladığını düşündürmüştür.tr_TR
dc.contributor.departmentGıda Mühendisliğitr_TR
dc.contributor.authorID10209849tr_TR
dc.embargo.terms2 yiltr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster