Basit öğe kaydını göster

dc.contributor.advisorAktaş, Emre
dc.contributor.authorAlavanda, Elif
dc.date.accessioned2018-09-13T06:58:04Z
dc.date.available2018-09-13T06:58:04Z
dc.date.issued2018-07-09
dc.date.submitted2018-06-11
dc.identifier.citation[1] https://teletip.saglik.gov.tr, (Haziran, 2018). [2] Molisch, Andreas F., Wireless communications, 2. Edition, John Wiley & Sons, 2012. [3] Safak, Mehmet., Digital Communications,John Wiley & Sons, 2017. [4] Proakis, John G., et al., Communication systems engineering, New Jersey: Prentice Hall, 1994. [5] Goldsmith, Andrea., Wireless communications, Cambridge university press, 2005. [6] Sharma, Pankaj. "Evolution of mobile wireless communication networks-1G to 5G as well as future prospective of next generation communication network." International Journal of Computer Science and Mobile Computing 2.8, 47-53, 2013. [7] Vora, Lopa J. "Evolution of mobile generation technology: 1G to 5G and review of upcoming wireless technology 5G.", 2015. [8] Gu, Guifen, and Guili Peng. "The survey of GSM wireless communication system." Computer and Information Application (ICCIA), 2010 International Conference on. IEEE, 2010. [9] Jou, Y. "Developments in third generation (3G) CDMA technology." Spread Spectrum Techniques and Applications, 2000 IEEE Sixth International Symposium on. Vol. 2. IEEE, 2000 [10] Govil, Jivesh, and Jivika Govil. "4G mobile communication systems: Turns, trends and transition." Convergence Information Technology, 2007. International Conference on. IEEE, 2007. [11] Hui, Suk Yu, and Kai Hau Yeung. "Challenges in the migration to 4G mobile systems." IEEE Communications magazine 41.12, 54-59, 2000. [12] Vihriala, Jaakko, et al. "On the waveforms for 5G mobile broadband communications." Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st. IEEE, 2015. [13] Yang, Lie-Liang, and Lajos Hanzo. "Multicarrier DS-CDMA: A multiple access scheme for ubiquitous broadband wireless communications." IEEE Communications Magazine 41.10, 116-124, 2003. [14] Bingham, John AC. "Multicarrier modulation for data transmission: An idea whose time has come." IEEE Communications magazine 28.5, 5-14, 1990. [15] Sari, Hikmet, Georges Karam, and Isabelle Jeanclaude. "Transmission techniques for digital terrestrial TV broadcasting." IEEE communications magazine 33.2, 100- 109, 1995. 148 [16] IEEE 802.11a-1999: High-speed physical layer in the 5 GHz band, 1999. [17] IEEE 802.11g-2003: Further Higher-Speed Physical Layer Extension in the 2.4 GHz Band, 2003. [18] Mosier, R. R., and R. G. Clabaugh. "Kineplex, a bandwidth-efficient binary transmission system." Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics 76.6, 723-728, 1958. [19] Zimmerman, Mark, and Alan Kirsch. "The AN/GSC-10 (KATHRYN) variable rate data modem for HF radio." IEEE Transactions on Communication Technology 15.2, 197-204, 1967. [20] Chow, Jacky S., Jerry C. Tu, and John M. Cioffi. "A discrete multitone transceiver system for HDSL applications." IEEE journal on selected areas in communications 9.6, 895-908, 1991. [21] Chang, Robert W. "Synthesis of bandlimited orthogonal signals for multichannel data transmission." Bell Labs Technical Journal 45.10, 1775-1796, 1966. [22] LaSorte, Nick, W. Justin Barnes, and Hazem H. Refai. "The history of orthogonal frequency division multiplexing." Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, 2008. [23] B. R. Saltzberg, "Performance of an efficient parallel data transmission system," IEEE Transactions on Communications Technology, vol. 15, no. 6, 1967. [24] Weinstein, S., and Paul Ebert. "Data transmission by frequency-division multiplexing using the discrete Fourier transform." IEEE transactions on Communication Technology 19.5, 628-634, 1971. [25] Peled, Abraham, and Antonio Ruiz. "Frequency domain data transmission using reduced computational complexity algorithms." Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’80.. Vol. 5. IEEE, 1980. [26] Shieh, W., Hongchun Bao, and Y. Tang. "Coherent optical OFDM: theory and design." Optics express 16.2, 841-859, 2008. [27] Sahin, Alphan, Ismail Guvenc, and Huseyin Arslan, "A comparative study of FBMC prototype filters in doubly dispersive channels." Globecom Workshops, IEEE, 2012. [28] Hara, Shinsuke, and Ramjee Prasad,Multicarrier techniques for 4G mobile communications, Artech House, 2003 [29] Schaich, Frank, and Thorsten Wild, "Waveform contenders for 5G OFDM vs. FBMC vs. UFMC." Communications, Control and Signal Processing, 2014 6th International Symposium on. IEEE, 2014. 149 [30] An, Changyoung, Byeongjae Kim, and Heung-Gyoon Ryu. "WF-OFDM (windowing and filtering OFDM) system for the 5G new radio waveform." Electronics, Electrical Engineering and Computing (INTERCON), 2017 IEEE XXIV International Conference on. IEEE, 2017. [31] Farhang-Boroujeny, Behrouz, and Chung Him Yuen. "Cosine modulated and offset QAM filter bank multicarrier techniques: a continuous-time prospect." EURASIP Journal on Advances in Signal Processing, 2010. [32] Farhang-Boroujeny, Behrouz. "Filter bank multicarrier modulation: A waveform candidate for 5G and beyond." Advances in Electrical Engineering, 2014. [33] Garcia-Roger, David, et al. "Multicarrier Waveform Harmonization and Complexity Analysis for an Efficient 5G Air Interface Implementation." Wireless Communications and Mobile Computing, 2017. [34] Lizeaga, Aitor, et al. "Evaluation of 5G Modulation Candidates WCP-COQAM, GFDM-OQAM, and FBMC-OQAM in Low-Band Highly Dispersive Wireless Channels." Journal of Computer Networks and Communications, 2017. [35] Saeedi-Sourck, Hamid, et al. "Sensitivity analysis of offset QAM multicarrier systems to residual carrier frequency and timing offsets." Signal Processing 91.7, 2011. [36] Selesnick, Ivan W. "Hilbert transform pairs of wavelet bases." IEEE Signal Processing Letters 8.6, 170-173, 2001. [37] Bellanger, M., and J. Daguet. "TDM-FDM transmultiplexer: Digital polyphase and FFT." IEEE Transactions on Communications 22.9, 1199-1205, 1974. [38] Hirosaki, Botaro. "An analysis of automatic equalizers for orthogonally multiplexed QAM systems." IEEE Transactions on Communications 28.1, 73-83, 1980. [39] Hirosaki, Batoro, Satoshi Hasegawa, and Akio Sabato. "Advanced groupband data modem using orthogonally multiplexed QAM technique." IEEE Transactions on Communications 34.6, 587-592, 1986. [40] Tzannes, M. A., M. C. Tzannes, and H. Resnikoff. "The DWMT: a multicarrier transceiver for ADSL using M-band wavelet transforms." ANSI Standard Committee T1E1 4, 93-067, 1993. [41] Sandberg, Stuart D., and Michael A. Tzannes. "Overlapped discrete multitone modulation for high speed copper wire communications." IEEE Journal on selected areas in communications 13.9, 1571-1585, 1995. [42] Vuletic, Dragan, Wade Lowdermilk, and F. Harris. "Advantage and implementation considerations of shaped OFDM signals." Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on. Vol. 1. IEEE, 2003. 150 [43] hCoxford, Arthur F., and Joseph Neal Payne. Advanced Mathematics: A Preparation for Calculus. Harcourt Brace Jovanovich, 1978.. [44] Cherubini, Giovanni, Evangelos Eleftheriou, and Sedat Olcer. "Filtered multitone modulation for very high-speed digital subscriber lines." IEEE Journal on Selected Areas in Communications 20.5 2002. [45] Hleiss, Rima, Pierre Duhamel, and Maurice Charbit. "Oversampled OFDM systems." Digital Signal Processing Proceedings, 1997. DSP 97., 1997 13th International Conference on. Vol. 1. IEEE, 1997. [46] Mishu, Md Motahar Hossain, and M. Rubaiyat Hossain Mondal. "Effectiveness of filter bank multicarrier modulation for 5G wireless communications." Advances in Electrical Engineering (ICAEE), 2017 4th International Conference on. IEEE, 2017.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/4877
dc.description.abstractMulticarrier systems are preferred today due to their robustness to the multipath effects and using fast fourier transform(FFT) easily to feasible and more efficient in many communication systems. Orthogonal Frequency Division Multiplexing (OFDM) system is a multicarrier system that allows a high speed broadband system is divided into lower speed signals at narrowband. In OFDM subcarriers are chosen orthogonal to each other pass through the flat fading channel improves the system performance. In many studies for next-generation communication systems, there is research on a system known as filter bank multicarrier (FBMC) which is an alternative to OFDM, uses faster fading signal shaping filters and more efficient because it does not use cyclic prefix. Many factors such as delay spread of the channel, doppler shift in wireless channels, the difference between receiver and transmitter oscillators cause inter symbol interefence (ISI) and intercarrier interference (ICI) and due to these interferences FBMC system performance also reduce as well as in OFDM system. The FBMC system is analyzed due to the its sensitivity to carrier frequency offset (CFO) and timing offset (TO) , which reduces its performance. In these analyses, Staggered Multitone Modulation(SMT) on the class of FBMC system that are based on quadrature amplitude modulation (OQAM) is used. The signal to interference ratio (SIR) is calculated without any of the assumption which are CFO and TO is so small in the system and the channel is flat fading. The results without assumption is analyzed in the small, medium and high delay spread areas. With this thesis, the changing in the power delay profile(PDP) of the channel is shown the effect on the FBMC system performance. Furthermore, in the AWGN channel , the performance of the OFDM and the FBMC system which are affected by the CFO and TO is observed due to the changing in the subcarrier number.tr_TR
dc.description.tableofcontentsÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii TEŞEKKÜR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v İÇİNDEKİLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi ÇİZELGELER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii ŞEKİLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix SİMGELER VE KISALTMALAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1. GİRİS¸ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1. Tezin Amacı . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2. Tezin Kapsamı ve Akışı . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. ÇOKLU TAŞIYICILI SİSTEMLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1. FBMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1. CMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2. SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.3. FMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2. OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3. CFO VE TO’NUN FBMC/SMT PERFORMANSINA ETKİSİ . . . . . . . . . . . . . . . . . . 41 3.1. AWGN kanalda performans analizi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.1. Kom¸su zaman ve frekans binlerinde zaman kayması olduğunda eşleştirilmiş süzgeç çıktılarının çıkarımı ( = 0, 6= 0, = 0 ) . . . . . . 43 3.1.2. Komşu zaman ve frekans binlerinde frekans ofseti varlığında eşleştirilmiş süzgeç çıktılarının çıkarımı ( 6= 0, = 0, = 0 ) . . . . . . 59 3.1.3. Komşu zaman ve frekans binlerinde zaman ve frekans ofseti varlığında eşleştirilmiş süzgeç çıktılarının çıkarımı ( 6= 0, 6= 0, 6= 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2. Frekans seçmeli kanalda performans analizi . . . . . . . . . . . . . . . . . . . . . . . . . . 83 vi 3.2.1. Komşu zaman ve frekans binlerinde eşleştirilmiş süzgeç çıktılarının çıkarımı( = 0, 6= 0, = 0) . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.2.2. Komşu zaman ve frekans binlerinde eşleştirilmiş süzgeç çıktılarının çıkarımı( 6= 0, = 0, = 0) . . . . . . . . . . . . . . . . . . . . . . . . . 96 3.2.3. Komşu zaman ve frekans binlerinde eşleştirilmiş süzgeç çıktılarının çıkarımı( 6= 0, 6= 0, 6= 0) . . . . . . . . . . . . . . . . . . . . . . . . . 107 4. KANAL MODELLERİ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5. CFO VE TO’NUN OFDM PERFORMANSINA ETKİSİ . . . . . . . . . . . . . . . . . . . . . . . 122 5.1. AWGN kanalda performans analizi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.1.1. Komşu zaman ve frekans binlerinde eşleştirilmiş süzgeç çıktılarının çıkarımı ( 6= 0, 6= 0, 6= 0 ) . . . . . . . . . . . . . . . . . . . . . . . . 122 5.1.2. Komşu zaman ve frekans binlerinde eşleştirilmiş süzgeç çıktılarının çıkarımı ( = 0, 6= 0, = 0 ) . . . . . . . . . . . . . . . . . . . . . . . . 127 5.1.3. Komşu zaman ve frekans binlerinde eşleştirilmiş süzgeç çıktılarının çıkarımı ( 6= 0, = 0, = 0 ) . . . . . . . . . . . . . . . . . . . . . . . . 130 5.2. Frekans seçmeli kanalda performans analizi . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6. NÜMERİK SONUÇLAR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7. SONUÇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 KAYNAKLAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 ÖZGEÇMİS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectfilter bank multicarrier
dc.subjectorthogonal frequency division multiplexing
dc.subjectcarrier frequency offset
dc.subjecttime offset
dc.subjectsignal to interference ratio
dc.titleFbmc Çok Taşıyıcılı Kablosuz Haberleşme Sistemlerinde Zaman ve Frekans Kaymalarının Performansa Etkisitr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetGünümüzde bir çok haberleşme sisteminde, çok yollu etkilere kar¸sı daha dayanıklı ve hızlı Fourier dönüşümü (FFT) kullanımından dolayı uygulanabilirliği kolay ve daha verimli olan çok taşıyıcılı sistemler tercih edilmektedir. Dik Frekans Bölmeli Çoğullama (OFDM) sistemi, yüksek hızlı geni¸s bantlı bir sistemi her biri daha dar bir bandı kullanan, daha düşük hızda sinyallere bölünmesini sağlayan bir çok taşıyıcılı sistemdir. OFDM'de birbirine dik olarak seçilen alt taşıyıcıların düz sönümlenmeli kanallardan geçmesi performansı iyileştirir. Yeni nesil haberleşme sistemleri için bir çok çalışmada OFDM'e alternatif çok taşıyıcılı filtre bankası (FBMC) olarak bilinen, ön ek kullanmadığı için verimliliği daha yüksek ve daha hızlı sönümlenen sinyal şekillendirme filtreleri kullanılan bir sistem üzerinde araştırmalar olduğu görülür. Yayılım gecikmeleri, kablosuz kanallarda meydana gelen doppler kayması, alıcı ve verici osilatörleri arasındaki farklılık gibi bir çok etken OFDM sisteminde oldu˘gu gibi FBMC sistemlerinde de semboller arası girişim (ISI) ve taşıyıcılar arası girişim (ICI)'a neden olarak sistem performansını dü¸sürür. Bu tez çalı¸smasında, FBMC sistemi performansının dü¸smesine neden olan ta¸sıyıcı frekans ofseti (CFO) ve zaman kayması (TO) karşı hassasiyetine göre analiz edilmiştir. Bu analizlerde ofset dörtlü genlik kiplemesine (OQAM)'ne dayanan FBMC sistemi sınıfındaki aşamalı çok yönlü modülasyon (SMT) kullanılmıştır. Sistemde bulunan CFO, TO'nun çok küçük olduğu ve kanalın düz sönümlenmeli olduğu varsayımı yapılmadan oluşturulan sistem modelleri ile sinyal girişim oranı (SIR) hesaplamaları yapılmıştır. Varsayımlar yapmadan bulunan sonuçlar düşük, orta, yüksek gecikmeli yayılma ortamlarında incelenmiştir. Bu çalışma ile, kanalın güç gecikme profilindeki (PDP) de˘ gi¸simin FBMC sistem performansına etkisi gösterilmiştir. Ayrıca AWGN kanalda CFO, TO tarafından etkilenen OFDM ile FBMC sistemlerinin performansları alt taşıyıcı sayısındaki değişimlere göre gözlenmiştir.tr_TR
dc.contributor.departmentElektrik –Elektronik Mühendisliğitr_TR
dc.contributor.authorID10200059tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster