Show simple item record

dc.contributor.advisorGürsoy, Vildan
dc.contributor.authorHajiyeva, Konul
dc.date.accessioned2018-02-20T12:11:28Z
dc.date.available2018-02-20T12:11:28Z
dc.date.issued2018
dc.date.submitted2018-01-18
dc.identifier.citationKAYNAKLAR [1] Billen, B., Spurny, R., Brams, M., Van, Elk R., Valera-Kummer, S., Yakel, JL., Voets, T., Bertrand, D., Smit, AB., Ulens, C., Molecular actions of smoking cessation drugs at α4β2 nicotinic receptors defined in crystal structures of a homologous binding protein, Proceedings of the National Academy of Sciences of the United States of America, 109(23), 9173-9178, 2012. [2] Angioni, A., Barra, A., Coroneo, V., Dessi, S., Cabras, P., Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers, Journal of Agricultural and Food Chemistry, 54(12), 4364-4370, 2006 [3] Kim Kuk, H., Kim Kyong, T., Nam Hong, G., Park Deok, H., Park Tae, J., Antagonists for nicotinic acetylcholine receptor, which are containing borneol or camphor as an active ingredient, Genomine, Inc., Pohang University Of Science And Technology, Patent NO: WO2001058436 A1, 2001. [4] Silvana, L., Martin, C.M., K.Michael, C., James, L.K., Andrew, H., David D. L., Jill, M.M., A Phase II study of St. John’s Wort for smoking cessation, Complementary Therapies in Medicine, 14, 175—184, 2006. [5] Amit S., Jon, O.E., Kavita, P., Ivana, T.C., Brent, B., Darrell, R.S., A Randomized Clinical Trial of St. John’s Wort for Smoking Cessation, The Journal of Alternative and Complementary Medicine, 16(7), 761-767, 2010. [6] Yorgancıoğlu, A., Esen A., Sigara bağımlılığı ve hekimler, Toraks dergisi,1, 90-95, 2000. [7] Küresel yetişkin tütün araştırması Türkiye 2012, Sağlık Bakanlığı yayın no:948, Anıl Matbaa, Ankara, 2-4, 2014. [8] Bilir, N. ve ark., Tütün ve Alkol Piyayası Düzenleme Kurulu (TAPDK), http://www.tapdk.gov.tr/tr/piyasa-duzenlemeleri/tutun-ve-alkol-kontrolu/tutun-mamulleri-ve-saglik.aspx, (Nisan, 2008). [9] Behr, J., Nowak, D., Tobacco smoke and respiratory disease. In: D’Amato G, Holgate ST; eds. The Impact of Air Pollution on Respiratory Health, ERS Journals Ltd. European Respiratory Journals, 21, 161-179, 2002. [10] Elbek, O., Kılınç, O., Aytemur, Z.A., Akyıldız, L., Küçük, Ç.U., Özge, C., Sağlam, L., Bostan, P., Dağlı, E., Türkiye’de Tütün Kontrolü, Turk Toraks Dergisi, 1-10, 2014. [11] Karlıkaya, C., Öztuna, F., Solak, Z.A., Özkan M., Örsel O., Tütün kontrolü, Toraks Dergisi, 7(1), 51-64, 2006. [12] Patrick, G.L., An Introduction to Medicinal Chemistry, 5.Baskı, Oxford University Yayıncılık, 42-56, 2013. [13] Akay, A., N.Ceren, Turanlıgil, S., Uyanıkgil, Y., İyon Kanalları ve Epilepsi Patojenezindeki Rolleri, Arşiv Kaynak Tarama Dergisi, 19, 72, 2010. [14] Edink, E., Structure-based design of AChBP ligands, new insights and applications, Doktora Tezi, Vrije University Faculty of Sciences, Amsterdam, 2011. [15] Brejc, K., et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors, Nature, 411, 269-76, 2001. [16] Arias, H.R., Molecular interactions between ligands and nicotinic acetylcholine receptors revealed by studies with acetylcholine binding proteins, Journal of Thermodynamics & Catalysis, 3(4), 1-7, 2012. [17] Sharples, C.G.V., Wonnacott, S., Neuronal Nicotinic Receptors, Tocris Reviews, 19, 2001. [18] Unwin, N., Refined Structure of the Nicotinic Acetylcholine Receptor at 4A Resolution, Journal of Molecular Biology, 346(4), 967, 2005. [19] Unwin, N., Fujiyoshi, Y., Gating Movement of Acetylcholine Receptor Caught by Plunge-Freezing, Journal of Molecular Biology, 422, 617, 2012. [20] Wonnacott S., Jacques B., Nicotinic ACh Receptors, Tocris Reviews, 28, 2007. [21] Daly, J.W., Nicotinic Agonists, Antagonists, and Modulators From Natural Sources, Cellular and Molecular Neurobiology, 25 (3-4), 513-552, 2005. [22] Prakash, R., Claire, A.H., René van Elk, August, B.S., Timothy, G., Titia, K.S., Structural Characterization of Binding Mode of Smoking Cessation Drugs to Nicotinic Acetylcholine Receptors through Study of Ligand Complexes with Acetylcholine-binding Protein, The Journal of Biological Chemistry, 287 (28), 23283-23293, 2012. [23] Etter, J.F., Cytisine for smoking cessation: A literature review and a meta-analysis, Archives of Internal Medicine, 166, 1553-1559, 2006. [24] Crooks, P.A., Bardo, M.T., Dwoskin, L.P., Nicotinic Receptor Antagonists as Treatments for Nicotine Abuse, Advances in Pharmacology, 69, 513-551, 2014. [25] Ingrid, B., Becky, W., Douglas, R.S., Tony, P.G., Mecamylamine – a nicotinic acetylcholine receptor antagonist with potential for the treatment of neuropsychiatric disorders, Expert opinion on Pharmacotherapy, 10 (16), 2709-2721, 2009. [26] Kitikannakorn, N., Chaiyakunapruk, N., Nimpitakpong, P., Dilokthornsakul, P., Meepoog, E., Kerdpeng, W., An overview of the evidences of herbals for smoking cessation, Complementary Therapies in Medicine, 21, 557-564, 2013. [27] Barnes, J., Anderson, L.A., Phillipson, J.D., St John’s worth (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties, Journal of Pharmacy and Pharmacology, 53, 583-600, 2001. [28] Butterweck, V., Schmidt, M., St. John’s wort: Role of active compounds for its mechanism of action and efficacy, Wiener Medizinische Wochenschrift, 157 (13-14), 356–361, 2007. [29] Zou, Y., Lu, Y., Wei, D., Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro, Journal of Agricultural and Food Chemistry, 52, 5032-5039, 2004. [30] Wenzig, E., Kunert, O., Ferreira, D., Schmid, M., Schuhly, W., Bauer, R., Hiermann, A., Flavonolignans from Avena sativa, Journal of Natural Products, 68 (2), 289-292, 2005. [31] Schmidt, K., Geckeler, K., Pharmacotherapy with avena sativa - a double blind study, International Journal of Clinical Pharmacology and Biopharmacy, 14(3), 214-216, 1976. [32] Dimberg, L.H., Gisse´n, C., Nilsson, J., Phenolic Compounds in Oat Grains(Avena sativa L.) Grown in Conventional and Organic Systems, Ambio, 34 (4-5), 331-337, 2005. [33] Felpin, F.X., Lebreton, J., History, chemistry and biology of alkaloids from Lobelia inflata, Tetrahedron , 60, 10127–10153, 2004. [34] Stead, L.F., Hughes, J.R., Lobeline for smoking cessation, Cochrane Database of Systematic Reviews, 2, Art. No.:CD000124, DOI:10.1002/14651858.CD000124.pub2, 2012. [35] Zuzartea, M., Goncalves, M.J., Cavaleiroa, C., Cruz, M.T., Benzarti A., Marongiu, B., Maxia, A., Piras, A., Salgueiroa, L., Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils, Industrial Crops and Products, 44, 97-103, 2013. [36] Ahmad, N., Fazal, H., Abbasi, B.H., Farooq, S., Mohammad Ali, Mubarak, A.K., Biological role of Piper nigrum L. (Black pepper): A Review, Asian Pacific Journal of Tropical Biomedicine, 1945-1953, 2012. [37] Rose, J.E., Behm, F.M., Inhalation of vaporfrom black pepper extract reduces smoking withdrawal symptoms, Drug Alcohol Dependence, 34 (3), 225-229, 1994. [38] Ahmad, A., Husain, A., Mujeeb, M., Alam Khan, S., Najmi, A.K., Sidduque, N.A., Damanhouri, Z.A., Anwar, F., A review of therapeutic potential of Nagilla sativa: A miracle herb, Asian Pacific Journal of Tropical Biomedicine, 3 (5), 337-352, 2013. [39] Hosseinzadeh, H., Parvardeh, S., Masoudi, A., Moghimi, M., Mahboobifard, F., Attenuation of morphine tolerance and dependence by thymoquinone in mice, Avicenna Journal of Phytomedicine, 6 (1), 55-66, 2016. [40] Alten, O., HIV-1 Glikoprotein 41 Molekülünün Aktif Bölgesinin Substrat- Bağlayıcı Alanının Moeküler Kenetlenme Yöntemiyle Araştırılması, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2011. [41] Ülgen, O., Trombin İnhibitörlerinin Moleküler Modelleme Çalışmaları, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2012. [42] http://autodock.scripps.edu/faqs-help/faq/how-autodock-4-converts-binding-energy-kcal-mol-into-ki (Aralık, 2015). [43] Walters, W.P., Stahl, M.T., Murcko, M., Virtual screening-an overview, Drug Discovery Today, 3, 160-178, 1998. [44] Davis, A.M., Teague, S.J., Kleywegt, G.J., Application and limitations of x-ray crystallographic data in structure-based ligand and drug design, Angewandte Chemie International Edition, 42, 2718-2736, 2003. [45] Yang, Z., Lasker, K., Schneidman-Duhovny, D., Webb, B., Huang, C.C., Pettersen, E.F., Goddard, T.D., Meng E.C., Sali, A., Ferrin, T.E., UCSF Chimera, MODELLER, and IMP: An integrated modeling system, Journal of Structural Biology 179 (3), 269–278, 2012. [46] Trott, O., Olson, A.J., AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading, Journal of Computational Chemistry, 31, 445-461, 2010. [47] https://bidb.metu.edu.tr/380-gaussian-yazilimi (Mart, 2014). [48] Zhenjiang Li, Honggui Wan, Yuhu Shi, Pingkai Ouyang, Personal Experience with Four Kinds of Chemical Structure Drawing Software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch, Journal of Chemical Information and Computer Sciences, 44, 1886-1890, 2004. [49] http://pubchem.ncbi.nlm.nih.gov/ (Ocak, 2014). [50] http://www.gaussian.com/g tech/ g ur/ u newzmat.htm (Ocak, 2014). [51] http://www.rcsb.org/pdb/home/home.do (Aralık, 2013). [52] https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl?pdbcode=index.html (Ocak, 2018) [53] Hansen, S.B., Sulzenbacher, G., Huxford, T., Marchot, P., Taylor, P., Bourne, Y., Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations, The EMBO Journal , 24, 3635–3646, 2005.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/4331
dc.description.abstractA total of 14.8 million people in Turkey (27.1%) use tobacco products. Nicotine dependence is the first cause of continued smoking behavior and overall failure of treatment interventions. Nicotine, an alkaloid derived from the leaves of the Nicotiana tabacum plant, is a very easily absorbed substance and is easily and rapidly absorbed by the lungs, mouth, nose, skin. Nicotine is the main cause of cigarette dependence. The nicotinic acetylcholine receptor (nAChR) is an ion channel receptor, which is activated by acetylcholine and nicotine which is the main component of tobacco dependence. To date, 17 nACh receptor subunits have been identified, including muscarinic (α1, β1, γ, δ and ε) and neuronal (α2-α10 and β2-β4). The most widely distributed nAChR subunits in the central nervous system are α4β2 (~ 90%) and α7 (~ 10%) subunits. The α4β2 subunit is the target structure of smoking cessation drugs. Although there are several experimental studies (in vivo and in vitro) that some phytochemicals (camphor, menton, menthol, carvacrol, thymoquinone, flavonoids, etc.) in some plants (avena sativa, hypericum perforatum, lavandula stoechas, lobelia inflata, nigella sativa, piper nigrum) are smoking cessation features, there are no any studies with nAChR (nicotinic acetylcholine receptor) including binding properties and energy. Our aim is to investigate how some phytochemicals (camphor, menton, menthol, carvacrol, thymoquinone, flavonoids, etc.) in some plants (avena sativa, hypericum perforatum, lavandula stoechas, lobelia inflata, nigella sativa, piper nigrum) interact with nAChR as an antagonist by using Docking program Autodock Vina. In the first part of the study, the validation of the AutoDock Vina program was performed for AChBP (acetylcholine binding protein) 1UW6 and 2BYR. As a result of calculation, RMSD values for 1UW6 and 2BYR were found 1.3 and 1.6 Å respectively. Due to RMSD value is less than 2 Å, AutoDock Vina has been determined to be suitable for the selected system. In the second step, geometry optimization of phytochemicals in lavandula stoechas, avena sativa, piper nigrum, lobelia inflata, hypericum perforatum and nigella sativa were performed by DFT/B3LYP/6-31G(d,p) and the binding of phytochemicals to the active site of AChBP was analyzed by using the AutoDock Vina program. İt was found that miquelianin has the highest antagonist activity. In the last part of the study, virtual ligand screening study was performed for 506 compounds in ZINC15 database. Our calculation results showed that the first 20 structures showing the best binding affinity would be promising candidates. As a result of the research carried out in this thesis, the obtained data will contribute to the design of new candidate antagonists which may be effective as nAChR antagonists.tr_TR
dc.description.tableofcontentsÖZET; ABSTRACT; TEŞEKKÜR; İÇİNDEKİLER; ŞEKİLLER; ÇİZELGELER; SİMGELER VE KISALTMALAR; 1. Giriş; 2. GENEL BİLGİLER; 2.1. Sigara Bağımlılığı; 2.2. Reseptörler: Yapı ve İşlevi; 2.2.1. Ligand-kapılı İyon Reseptörü; 2.3. Nikotinik Asetilkolin Reseptörü (nAChR) ve Asetilkolin Bağlanma Proteini (AChBP); 2.4. nACh Reseptörü ve AChB Proteinin X-ray Yapıları; 2.5. Sigara Bağımlılığının Tedavisi; 2.5.1. nACh Reseptör Agonistleri; 2.5.2. nACh Reseptör Antagonistleri; 2.5.3. Sigara Bağımlılığı Tedavisinde Kullanılan Bitkiler; 2.5.3.1. Sarı Kantaron (Hypericum perforatum); 2.5.3.2. Yulaf (Avena sativa); 2.5.3.3. Lobelya, Kızılderili tütünü (Lobelia, Lobelia inflata); 2.5.3.4. Karabaş otu (Lavandula stoechas); 2.5.3.5. Karabiber (Black pepper, Piper Nigrum); 2.5.3.6. Çörekotu (Nigella sativa); 2.6. Bilgisayar-Destekli İlaç Tasarımı; 2.7. Moleküler Kenetlenme (Doking); 2.8. Sanal Ligand Taraması; 3.MATERYAL VE METOTLAR; 3.1. KULLANILAN YAZILIMLAR; 3.1.1. ZINC15 veritabanı; 3.1.2. UCSF Chimera; 3.1.3. AutoDock Vina; 3.1.4. Raccoon; 3.1.5. Cygwin; 3.1.6. Gaussian09; 3.1.7. Chemoffice; 3.2. ÇALIŞMA AŞAMALARI; 3.2.1. Bitkilerdeki Fitokimyasal Yapıların Hazırlanması; 3.2.2. Doking Yönteminin Validasyonu: Agonist ve Antagonist; 3.2.3. Doking Hesaplamaları; 3.2.3.1. Hedef Proteinin Seçilmesi ve Hazırlanması: AChB Proteini; 3.2.3.2. Ligandların Hazırlanması: Fitokimyasallar; 3.2.3.3. AutoDock Vina ile Doking Hesaplamaları; 3.2.4. Sanal Ligand Taraması için Ligand ve AChBP Hazırlanması; 4. SONUÇLAR; 4.1. Fitokimyasalların Geometri Optimizasyonu; 4.2. Validasyon Hesaplaması: AChB Protein kompleksi; 4.3. Doking Hesaplamaları; 4.3.1. Agonist hesaplamaları: 1UW6; 4.3.1.1. Avena sativa, Yulaf. Antranilik asit; 4.3.1.2. Kafeik asit; 4.3.1.3. Piper Nigrum, Black pepper, Kara biber. Kamfor; 4.3.1.4. Limonen; 4.3.1.5. Nigella sativa, Çörekotu. Karvakrol; 4.3.1.6. Karvon; 4.3.1.7. Timol; 4.3.1.8. Timokinon; 4.3.1.9. Lavandula stoechas, Karabaş otu. Kamfor; 4.3.1.10. Karvakrol; 4.3.1.11. Mentol; 4.3.1.12. Menton; 4.3.1.13. Lobelia inflata, Lobelya, Lobelin; 4.3.1.14. Hypericum perforatum, St. John’s wort, Sarı kantaron. Astilbin; 4.3.1.15. Katekin; 4.3.1.16. Hiperozid; 4.3.1.17. Izokuersitrin; 4.3.1.18. Kaemferol; 4.3.1.19. Epikatekin; 4.3.1.20. Luteolin; 4.3.1.21. Mikuelianin; 4.3.1.22. Mirisetin; 4.3.1.23. Kuersetin; 4.3.1.24. Kuersitrin; 4.3.1.25. Rutin; 4.3.2. Antagonist hesaplamaları: 2BYR; 4.3.2.1. Avena sativa, Yulaf. Antranilik asit; 4.3.2.2. Kafeik asit; 4.3.2.3. Piper Nigrum, Black pepper, Kara biber. Kamfor; 4.3.2.4. Limonen; 4.3.2.5. Nigella sativa, Çörekotu. Karvakrol; 4.3.2.6. Karvon; 4.3.2.7. Timol; 4.3.2.8. Timokinon; 4.3.2.9. Lavandula stoechas, Karabaş otu. Kamfor; 4.3.2.10. Karvakrol; 4.3.2.11. Mentol; 4.3.2.12. Menton; 4.3.2.13. Lobelia inflata, Lobelya. Lobelin; 4.3.2.14. Hypericum perforatum, St. John’s wort, Sarı kantaron. Astilbin; 4.3.2.15. Katekin; 4.3.2.16. Hiperozid; 4.3.2.17. Izokuersitrin; 4.3.2.18. Kaemferol; 4.3.2.19. Epikatekin; 4.3.2.20. Luteolin; 4.3.2.21. Mikuelianin; 4.3.2.22. Mirisetin; 4.3.2.23. Kuersetin; 4.3.2.24. Kuersitrin; 4.3.2.25. Rutin; 4.3.3. Karşılaştırma; 4.4. Sanal Ligand Taraması Sonuçları; 5.YORUMLAR ve ÖNERİLER; KAYNAKLAR; EKLER; EK 1: Doking için hazırlanan konfigürasyon dosyası: 1UW6; EK 2: Doking için hazırlanan konfigürasyon dosyası: 2BYR; ÖZGEÇMİŞtr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/restrictedAccesstr_TR
dc.subjectNikotinik asetilkolin reseptörü
dc.subject1UW6
dc.subject2BYR
dc.subjectAntagonist
dc.subjectDoking
dc.titleSanal Ligand Taraması Yöntemi ile Nikotinik Asetilkolin Antagonistlerinin Tasarımıtr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetTürkiye nüfusunun 15 milyona (27,1%) yakını tütün ürünü tüketmektedir. Nikotin bağımlılığı sigara kullanma alışkanlığının devam ettirilmesine ve tedavilerin başarısızlıkla sonuçlanmasına sebep olmaktadır. Akciğerler, ağız, burun, deriden kolay ve hızlı bir şekilde emilen nikotin Nicotiana tabacum bitkisinin yapraklarından elde edilen bir alkaloiddir. Sigara bağımlılığının başlıca sebebi Nikotin’dir. İyon kanal reseptörü olan nikotinik asetilkolin reseptörü (nAChR) asetilkolin ve tütün bağımlılığının ana maddesi olan nikotin tarafından aktive edilir. Bugüne kadar, muskarinik (α1, β1, γ, δ ve ε) ve nöronal (α2-α10 and β2-β4) olmak üzere 17 tane nACh reseptör altbirimi tespit edilmiştir. Merkezi sinir sisteminde en çok yayılan nAChR altbirimleri α4β2 (~90%) ve α7 (~10%) altbirimleridir. α4β2 altbirimi asetilkolin ve nikotine olan yüksek afinitesi ile karakterize edilir ve sigara bıraktırıcı ilaçların hedef yapısıdır. Bazı bitkilerin (çörekotu, karabaş otu, kara biber, lobelya, sarı kantaron ve yulaf) içindeki bazı fitokimyasalların (kamfor, menton, mentol, karvakrol, timokinon, flavonoidler v.s.) sigara bıraktırıcı özelliği olduğuna dair deneysel çalışmalar olmasına karşın, Nikotinik Asetilkolin Reseptörü (nAChR) ile bağlanma özelliklerini ve bağlanma enerjisini içeren herhangi bir çalışma bulunmamaktadır. Amacımız, bu bitkilerin (çörekotu, karabaş otu, kara biber, lobelya, sarı kantaron ve yulaf) içindeki bazı fitokimyasalların (kamfor, menton, mentol, karvakrol, timokinon, flavonoidler v.s.) nAChR antagonisti olarak etkisinin İlaç Tasarım yöntemlerinden Doking (kenetleme) programı olan Autodock Vina kullanılarak araştırılmasıdır. Çalışmanın ilk kısmında, AutoDock Vina programının validasyonu 1UW6 ve 2BYR kodlu Asetilkolin Bağlanma Proteini (AChBP) için yapılmıştır. Hesaplama sonucunda RMSD değerleri 1.3 ve 1.6 Å olarak bulunmuştur. RMSD değeri 2 Å ’dan küçük olduğundan dolayı AutoDock Vina programının seçilen sistem için uygun olduğu belirlenmiştir. İkinci aşamada, karabaş otu, çörekotu, yulaf, kara biber, lobelya ve sarı kantaron bitkilerindeki fitokimyasalların DFT/B3LYP/6-31G(d,p) temel seti ile geometri optimizasyonu yapılmıştır ve fitokimyasalların AChBP’nin aktif bölgesine bağlanması AutoDock Vina programı kullanılarak incelenmiştir. İlk kez yapılan bu çalışma sonucunda, antagonistik özelliği en yüksek bileşik mikuelianin olarak saptanmıştır. Çalışmanın son aşamasında, mikuelianin yapısından yola çıkılıp ZINC15 veri tabanı kullanılarak bulunan 506 bileşik ile sanal ligand taraması yapılmıştır. Hesaplamalar sonucunda en iyi bağlanma afinitesine sahip ilk 20 bileşiğin ümit verici aday olabileceği bulunmuştur. Bu tezde yapılan araştırmalar sonucunda elde ettiğimiz veriler, nAChR antagonisti olarak etkili olabilecek yeni aday antagonistlerinin tasarlanmasına katkıda bulunacaktır.tr_TR
dc.contributor.departmentKimyatr_TR
dc.contributor.authorID10178556tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record