• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Mühendislik Fakültesi
  • Bilgisayar Mühendisliği Bölümü
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Uçtan-Uca Konuşma Tanıma Modeli: Türkçe'deki Deneyler

View/Open
PhDThesis-V5-Lib.pdf (5.003Mb)
Date
2018
Author
ASEFISARAY, BEHNAM
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
For decades, the main components of Automatic Speech Recognition (ASR) systems have been pronunciation dictionary and Hidden Markov Models (HMMs). HMMs assume conditional independence between its output and creating the pronunciation dictionary have a tedious and time consuming process. Additionally, training each of these models are independent with each other and there especially exists a disconnect between acoustic model accuracy and word error rate (Word Error Rate) of automatic speech recognition. Connectionist Temporal Classification (CTC) character models attempts to solve some of these issues by jointly learning the pronunciation and acoustic model as a single model. However, both HMM and CTC models suffer from conditional independence assumption and rely heavily on a large enough language model during decoding. In this thesis, we investigate the traditional paradigm of ASR and focus the limitations of HMM and CTC base speech recognition models. We propose an approach to ASR with neural attention mechanism models and we directly optimize speech transcriptions error rate in Turkish. The end-to-end recurrent neural network model jointly learns all the main components of a speech recognition system: the pronunciation dictionary, language model and acoustic model. We used transfer learning in our end-to-end architecture in order to training a good enough acoustic model using limited amount of transcribed speech data.
URI
http://hdl.handle.net/11655/4330
xmlui.mirage2.itemSummaryView.Collections
  • Bilgisayar Mühendisliği Bölümü Tez Koleksiyonu [184]
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV