Show simple item record

dc.contributor.advisorPEKEL BAYRAMGİL, Nursel
dc.contributor.authorHussein, Hiba
dc.date.accessioned2018-02-12T05:59:19Z
dc.date.available2018-02-12T05:59:19Z
dc.date.issued2018
dc.date.submitted2018-01-12
dc.identifier.urihttp://hdl.handle.net/11655/4269
dc.description.abstractGraphene is a rising material in the field of materials science and condensed-matter physics. It indicates a two-dimensional material having high electronic and crystal property and has its own applications in new physics, which will be discussed briefly in this study, Graphene does not need any evidence highlighting its important in fundamental physics, unlike the case in the recognition of applications only when their material commercial products come into being. Generally, graphene, in terms of concept, is a new set of materials that is in the thickness of one atom that opens roads into physics that is low-dimensional. This new material, graphene, in the field of materials science, has, in the studies available, proved to be magnificent and amazing in providing a ground fertile for applications in different domains of sciences, such as (pharmaceutics, medicine, nanotechnology, and others). For this study, modification of graphene was started with by some acids and bases to obtain acid- and amine-modified graphenes. Secondly, composites were prepared with acid- and amine-modified graphenes, and then their characterizations were made using different instrumental analysis methods such as FT-IR, XRD, SEM, Elemental analysis, TEM, Raman Spectroscopy, Mechanical test and DSC analysis. Thirdly, modified-graphene nanocomposite film with 2-hydroxyethylcellulose (2-HEC) with and without doxorubicine (DOXO) (which is used for cancer therapy) was prepared for the purpose of drug delivery. Furthermore, to search the electrical properties of modified-graphene / 2-HEC nanocomposite films, with 4-point probe conductivity measurements were used.tr_TR
dc.description.sponsorshipYTB Kurumu ve Sudan Governmenttr_TR
dc.description.tableofcontentsPage ABSTRACT i ÖZET iii ACKNOWLEDGMENT v TABLE OF CONTENTS vi LIST OF TABLES xii LIST OF FIGURES xiv ABBREVIATION xxii 1. INTRODUCTION 1 2. LITERATURE REVIEW 3 2.1. Carbon 3 2.1.1. Graphite and Diamond 3 2.1.2. Carbon nanotube 5 2.1.3. Fullerenes 6 2.1.4. Graphene family nanomaterials (GFNs) 6 2.1.5. Graphene 6 2.1.5.1. Properties of graphene 8 2.1.5.1.1. Physicochemical properties 9 2.1.5.1.2. Thermal and electrical properties 10 2.1.5.1.3. Optical properties 10 2.1.5.1.4. Mechanical properties 10 2.1.5.1.5. Biological properties 10 2.1.5.2. Synthesis of graphene 11 2.1.5.3. Modifications of graphene 12 2.1.5.3.1. Covalent modifications 13 2.1.5.3.2. Non-covalent modifications 13 2.1.5.3.3. Acid modification 14 Page 2.1.5.3.4. Base modification 15 2.1.5.4. Graphene derivatives 16 2.1.5.4.1. Graphene Oxide 17 2.1.5.5. Application of graphene 18 2.1.5.5.1. Nanotechnology 18 2.1.5.5.2. Composites 19 2.1.5.5.2.1. Nanocomposites 20 2.1.5.5.2.1.1. Graphene nanocomposites 20 2.1.5.5.3. Cellulose 22 2.1.5.5.3.1. 2-Hydroxyethylcellulose (2-HEC) 22 2.1.5.5.4. Bio-medical applications 23 2.1.5.5.4.1. Gene delivery 23 2.1.5.5.4.2. Drug delivery 24 2.1.5.5.4.2.1. Doxorubicine (DOXO) 25 2.1.5.5.4.3. Tissue Engineering 25 2.1.5.5.4.4. Cancer Therapy 26 2.1.5.5.5. Graphene as Antimicrobials 26 2.1.5.5.6. Graphene as Sensors of Biomolecules 27 2.1.5.5.7. Significance of graphene for electrochemical biosensing 28 2.1.5.5.8. Applications of graphene in electrical fields and others 28 2.1.5.5.8.1. Low-cost, thinner display screens for mobile devices 29 2.1.5.5.8.2. Lithium-ion batteries that recharge faster 29 2.1.5.5.8.3. Ultra capacitors with better performance than batteries 30 2.1.5.5.8.4. Low cost water desalination 30 2.1.5.5.8.5. Integrated circuits with graphene transistors 30 2.1.5.5.8.6. Transistors that operate at higher frequency 30 2.1.5.5.8.7. Corrosion-resistant coating 30 2.1.5.5.9. Environmental applications of graphene 30 Page 2.1.5.5.10. Catalytical applications of graphene 32 2.1.5.6. Toxicity and Biocompatibility of Graphene Materials 32 2.2. Instrumental methods commonly used to characterize graphene and its nanocomposites 33 2.2.1. Fourier Transform Infrared (FT- IR) Spectroscopy 33 2.2.2. X- Ray Diffraction (XRD) 33 2.2.3. Scanning Electron Microscopy (SEM( 33 2.2.4. Elemental Mapping 34 2.2.5. Transmission Electron Microscopy (TEM) 35 2.2.6. Raman Spectroscopy 35 2.2.7. Differential Scanning Calorimetry (DSC) 36 2.2.8. Mechanical Test Method 37 2.2.9. Electrical Conductivity 37 3. EXPERIMENTAL 39 3.1. Materials 39 3.2. Methods 40 3.2.1. Chemical modification of graphene 40 3.2.1.1. Acid modification 40 3.2.1.2. Base modification 42 3.2.2. Preparation of composites 44 3.2.3. Preparation of nanocomposite films 45 3.2.4. DOXO release from 2–HEC / graphene nanocomposite films 47 3.3. Instrumental Methods 48 3.3.1. Fourier Transform Infrared (FT- IR) Spectroscopy 48 3.3.2. X- Ray Diffraction (XRD) 48 3.3.3. Scanning Electron Microscopy (SEM) 48 3.3.4. Elemental Mapping 48 3.3.5. Transmission Electron Microscopy (TEM) 48 3.3.6. Raman Spectroscopy 49 Page 3.3.7. Differential Scanning Calorimetry (DSC) 49 3.3.8. Mechanical Tests 49 3.3.9. Electrical Conductivity Measurements 50 4. RESULTS AND DISCUSSION 51 4.1. Results of graphene modifications 51 4.1.1. Fourier Transform Infrared (FT-IR) analysis of pristine graphene and modified graphene 51 4.1.1.1. FT-IR analysis of pristine graphene and acid modified graphene 51 4.1.1.2. FT-IR analysis of base modified graphene 56 4.1.2. X-Ray Diffraction (XRD) analysis of graphene and modified graphene 59 4.1.2.1. XRD analysis of graphene 59 4.1.2.2. XRD analysis of acid modified graphene 59 4.1.2.3. XRD analysis of base modified graphene 65 4.1.3. SEM analysis of graphene and modified graphene 67 4.1.3.1. SEM analysis of acid modified graphene 68 4.1.3.2. SEM analysis of base modified graphene 70 4.1.4. Results of Elemental mapping analysis of graphene and modified graphene 71 4.1.4.1. Elemental Mapping results of pristine graphene 72 4.1.4.2. Elemental Mapping results for acid modified graphene 72 4.1.4.3. Elemental Mapping results for base modified graphene 80 4.1.5. Transmission electron microscopy (TEM) analysis of graphene and HNO3 modified graphene 82 4.1.6. Raman spectroscopic analysis results for graphene and modified graphene 83 4.1.6.1. Raman spectral analysis of graphene and acid modified graphene 85 4.1.6.2. Raman spectral analysis of base modified graphene 88 Page 4.1.7. Differential Scanning Calorimetry (DSC) analysis of graphene and modified graphene 92 4.1.7.1. DSC analysis of graphene and acid modified graphene 92 4.1.7.2. DSC analysis of graphene and base modified graphene 93 4.2. Results for modified graphene composites 95 4.2.1. FT-IR analysis of acid and base modified graphene composites 95 4.2.1.1. FT-IR analysis of HNO3 modified graphene-VIM and HNO3 modified graphene-PEI composites 95 4.2.1.2. FT-IR analysis of H3PO4 modified graphene-VIM and H3PO4 modified graphene-PEI composites 96 4.2.1.3. FT-IR analysis of DEA modified graphene-VIM and DEA modified graphene-PEI composites 97 4.2.1.4. FT-IR analysis of EDA modified graphene-VIM and EDA modified graphene-PEI composites 98 4.2.2. XRD analysis of acid and base modified graphene composites 99 4.2.3. SEM analysis of composites 101 4.2.3.1. SEM analysis of graphene and acid-modified graphene composites 101 4.2.3.2. SEM analysis of base-modified graphene composites 103 4.2.4. Elemental Mapping results for acid-modified graphene composites 105 4.2.4.1. Elemental mapping analysis of HNO3-modified graphene PEI and VIM composites 105 4.2.5. TEM analysis of acid-modified graphene composites 106 4.2.5.1. TEM analysis of HNO3-modified graphene PEI and VIM composites 106 4.2.6. Raman spectroscopic analysis results for composites 107 4.2.6.1. Raman spectroscopic analysis results for acid- and base- modified graphene composites 107 4.2.7. DSC analysis of composites 112 Page 4.2.7.1. DSC analysis of acid- and base-modified graphene composites 112 4.3. Results for graphene and modified graphene-doped 2-hydroxyethylcellulose films 114 4.3.1. The results of FT-IR characterization of 2-HEC/modified graphene films 114 4.3.2. The results of XRD characterization of 2-HEC/modified graphene films 115 4.3.3. The results of SEM characterization of 2-HEC/modified graphene films 117 4.3.4. Elemental mapping results of SEM characterization of 2-HEC/modified graphene films 119 4.3.5. The results of DSC analysis of modified graphene-doped 2-HEC films 121 4.3.6. Mechanical behavior of modified graphene-doped 2-HEC films 124 4.4. Applications of graphene and prepared graphene derivatives 127 4.4.1. Use of modified graphene-doped 2-HEC films for doxorubicine release 127 4.4.2. Measurements for electrical conductivity of modified graphene doped 2-HEC films 139 5. OVERALL RESULTS 141 6. REFERENCES 145 CURRICULUM VITAE 161tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/embargoedAccesstr_TR
dc.subjectGrafentr_TR
dc.subjectModifikasyon
dc.subject2-Hidroksietilselüloz
dc.subjectElemental haritalama
dc.titleModified Graphene-Polymer Nanocomposites and Their Utilization in Various Applicationstr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetGrafen; malzeme, malzeme bilimi ve yoğun madde fiziğinin ufukta hızla yükselen bir yıldızıdır. Kısa geçmişinde, fizik ve potansiyel uygulama çeşitliliği göstermekle birlikte, iki boyutlu bu malzeme olağanüstü yüksek kristal ve elektronik özellikler sergilemektedir. Ortaya konan ticarî ürünler, uygulamaların gerçekliği konusunda su götürmez iken, artık temel fizik açısından grafenin ne kadar önemli olduğuna dair başka bir kanıta gerek yoktur. Genel olarak, grafen sadece bir atom kalınlığına sahip, kavramsal olarak yeni bir materyal sınıfını temsil eder ve bu temelde, sürprizleri elden bırakmayan ve uygulamalara elverişli zemin sağlamaya devam eden düşük boyutlu fiziğe yeni fırsatlar sunar. Bu tez çalışmasına, grafenin asit ve bazlarla modifiye edilmesiyle başlanmış ve asit ve amin ile modifiye edilmiş grafenler elde edilmiştir. İkinci olarak, asit ve amin ile modifiye edilmiş grafenlerle kompozitler hazırlanmış ve FTIR, XRD, SEM, Elementel analiz, TEM, Raman Spektroskopisi, Mekanik Test ve DSC analizi gibi farklı enstrümantal analiz yöntemleri kullanılarak karakterizasyonları yapılmıştır Üçüncü olarak, ilaç salımı amacıyla doksorubisin (DOXO) (kanser tedavisi için kullanılan) içeren ve içermeyen 2-hidroksietilselülozlu (2-HEC) modifiye grafen nanokompozit filmleri hazırlanmıştır. Ayrıca, modifiye grafen / 2-HEC nanokompozit filmlerin elektriksel özelliklerini araştırmak için bu filmlerin 4 nokta prob iletkenlik ölçüm sistemi kullanılarak iletkenlikleri ölçülmüştür.tr_TR
dc.contributor.departmentKimyatr_TR
dc.contributor.authorID10181138tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record