Show simple item record

dc.contributor.advisorBaşman, Arzu
dc.contributor.authorDilbirliği, Elif Nur
dc.date.accessioned2025-03-03T10:17:38Z
dc.date.issued2024
dc.date.submitted2024-12-26
dc.identifier.citationA.A.C.C., Official Methods of Analysis (14th ed.). Washington, D.C: American Association of Cereal Chemists, 1990. A.O.A.C., Official Methods of Analysis (18th ed.) Arlington, Association of Official Analytical Chemists; 2005. Ahmed, I. A. M., Ozcan, M. M., Uslu, N., Yilmaz, H., Mohammed, B. M., ve Albakry, Z., Effect of microwave and oven roasting on chemical composition, bioactive properties, phenolic compounds and fatty acid compositions of sunflower seed and oils. Journal of the American Oil Chemistry Society, 101(8), 797–807. https://doi.org/10.1002/aocs.12824, 2024. Al Surmi, N. Y., El Dengawy, R. A. H., ve Khalifa, A. H., Chemical and nutritional aspects of some safflower seed varieties. https://doi.org/10.4172/2157-7110.1000585, 2016. Anonim-A, Aspir Çeşitleri, T.C. Tarım ve Orman Bakanlığı, https://arastirma.tarimorman.gov.tr/gktaem/Menu/72/Aspir-Cesitleri, (Erişim tarihi: 19 Ekim 2022). Anonim-B, Enzyme: 1.14.18.1, https://www.genome.jp/entry/1.14.18.1 (Erişim tarihi: 10 Kasım 2024) Anonim-C, Measurement of Tyrosinase Activity Using the LAMBDA 465 UV/Vis Spectrophotometer,https://resources.perkinelmer.com/lab-solutions/resources/docs/APP-Measurement-of-Tyrosinase-Activity-using-LAMBDA-465-012353A_01.pdf, (Erişim tarihi: 23 Ağustos 2024). Anonim-D, Türkiye İstatistik Kurumu, Tarımsal İstatistik Verileri, https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr, (Erişim tarihi: 30 Aralık 2024) Apak, R., Güçlü, K., Özyürek, M., ve Karademir, S. E., Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970–7981. https://doi.org/10.1021/jf048741x, 2004. Arslan, B., ve Özcan, M., Yabancı Orijinli Bazı Aspir (Carthamus tinctorius L.) Genotiplerinin Tohum Verimi ve Verim Özellikleri ile Yağ Oranlarının Belirlenmesi, Tekirdağ, 2017. Bozan, B., ve Temelli, F., Chemical composition and oxidative stability of flax, safflower and poppy seed and seed oils. Bioresource Technology, 99(14), 6354–6359. https://doi.org/10.1016/j.biortech.2007.12.009, 2008. Cai, Y., Yu, Y., Duan, G., ve Li, Y., Study on infrared-assisted extraction coupled with high performance liquid chromatography (HPLC) for determination of catechin, epicatechin, and procyanidin B2 in grape seeds. Food Chemistry, 127(4), 1872–1877. https://doi.org/10.1016/j.foodchem.2011.02.026, 2011. Dinçel, N. G. K., Yağ Bitkileri İçinde Kıymetli Bir Alternatif; Aspir (Carthamus tinctorius L.). Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 11(1), 195–203. https://doi.org/10.35193/bseufbd.1165220, 2024. Dirir, A. M., Daou, M., Yousef, A. F., ve Yousef, L. F., A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochemistry Reviews, 21(4), 1049–1079. https://doi.org/10.1007/s11101-021-09773-1, 2022. Dung, N. T., Bajpai, V. K., Rahman, A., Yoon, J. I., ve Kang, S. C., Phenolic contents, antioxidant and tyrosinase inhibitory activities of Lonicera japonica Thumb. Journal of Food Biochemistry, 35(1), 148–160. https://doi.org/10.1111/j.1745-4514.2010.00461.x, 2011. El-Geddawy, M. A. U., Sorour, M. A., Abou-El-Hawa, S. H., ve Taha, E. M. M., Effect of domestic processing and microwave heating on phenolic compounds and tannins in some oil seeds. SVU-International Journal of Agricultural Sciences, 1(2), 23–32. https://doi.org/10.21608/svuijas.2019.67094, 2019. Godrich, J., Rose, P., Muleya, M., ve Gould, J. The effect of popping, soaking, boiling and roasting processes on antinutritional factors in chickpeas and red kidney beans. International Journal of Food Science & Technology, 58(1), 279–289. https://doi.org/10.1111/ijfs.16190, 2023. Gökmen, V., Serpen, A., ve Fogliano, V., Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’ approach. Trends in Food Science & Technology, 20(6–7), 278–288. https://doi.org/10.1016/j.tifs.2009.03.010, 2009. Gosal, S. S., ve Wani, S. H., Accelerated Plant Breeding, Volume 4, Oil Crops, Chapter 9 Saffower Improvement: Conventional Breeding and Biotechnological Approach. Springer. https://doi.org/10.1007/978-3-030-81107-5, 2022. Hall, C., Overview of the Oilseed Safflower (Carthamus tinctorius L.). Encyclopedia of Food Grains, Second Edition, 254–258. https://doi.org/10.1016/B978-0-12-394437-5.00030-9, 2016. Hassanpour, S., MaheriSis, N., ve Eshratkhah, B. Plants and secondary metabolites (Tannins): A Review., 2011. Hoff, J. E., ve Singleton, K. I., A method for determination of tannins in foods by means of immobilized protein. Journal of Food Science, 42(6), 1566–1569. https://doi.org/10.1111/j.1365-2621.1977.tb08427.x, 1977. Hoque, M. B., Tanjila, M. J., Hosen, M. I., Hannan, M. A., Haque, P., Rahman, M. M., ve Hasan, T., A comprehensive review of the health effects, origins, uses, and safety of tannins. Plant and Soil, 1–20. https://doi.org/10.1007/s11104-024-06768-7, 2024. Horibe, I., Satoh, Y., Shiota, Y., Kumagai, A., Horike, N., Takemori, H., Uesato, S., Sugie, S., Obata, K., ve Kawahara, H., Induction of melanogenesis by 4′-O-methylated flavonoids in B16F10 melanoma cells. Journal of Natural Medicines, 67, 705–710. https://doi.org/10.1007/s11418-012-0727-y, 2013. Huang, D., Yang, P., Tang, X., Luo, L., ve Sunden, B., Application of infrared radiation in the drying of food products. Trends in Food Science & Technology, 110, 765–777. https://doi.org/10.1016/j.tifs.2021.02.039, 2021. Huang, X.-X., Yan, Z.-Y., Liu, S., Wang, X.-B., ve Song, S.-J., Investigation of chemical constituents of safflower and their tyrosinase inhibitory activity. Journal of Asian Natural Products Research, 21(3), 248–256. https://doi.org/10.1080/10286020.2018.1430775, 2019. Ingale, S., ve Shrivastava, S. K., Chemical and bio-chemical studies of new varieties of safflower (Carthamus tinctorius L.) PBNS-12 and PBNS-40 seeds. Advances in Agriculture & Botanics, 3(2), 127–138. 2011. Irondi, E. A., Adegoke, B. M., Effion, E. S., Oyewo, S. O., Alamu, E. O., ve Boligon, A. A., Enzymes inhibitory property, antioxidant activity and phenolics profile of raw and roasted red sorghum grains in vitro. Food Science and Human Wellness, 8(2), 142–148. https://doi.org/10.1016/j.fshw.2019.03.012, 2019a. Irondi, E. A., Ogunsanmi, A. O., Ahmad, R. S., Ajani, E. O., Adegoke, B. M., ve Boligon, A. A., Effect of roasting on phenolics composition, enzymes inhibitory and antioxidant properties of cowpea pulses. Journal of Food Measurement and Characterization, 13, 1489–1496. https://doi.org/10.1007/s11694-019-00064-0, 2019b. Ismailoglu, S. O., ve Başman, A., Physicochemical properties of infrared heat‐moisture treated wheat starch. Starch‐Stärke, 68(1–2), 67–75. https://doi.org/10.1002/star.201500160, 2016. Kadam, D. M., Kumar, M., ve Kasara, A., Application of high energy electromagnetic radiations in elimination of anti-nutritional factors from oilseeds. LWT, 151, 112085. https://doi.org/10.1016/j.lwt.2021.112085, 2021. Kang, G.-H., Chang, E.-J., ve Choi, S.-W., Antioxidative activity of phenolic compounds in roasted safflower (Carthamus tinctorius L.) seeds. Preventive Nutrition and Food Science, 4(4), 221–225. 1999. Kang, K., Park, S., Kim, Y. S., Lee, S., ve Back, K., Biosynthesis and biotechnological production of serotonin derivatives. Applied Microbiology and Biotechnology, 83(1), 27–34. https://doi.org/10.1007/s00253-009-1956-1, 2009. Karabaş, H., Ülkemiz Islahçı Çeşitlerinden Remzibey-05 Aspir (Carthamus tinctorius L.) Tohumlarından Üretilen Biyodizelin Yakıt Özelliklerinin İncelenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 27(1), 9–17. 2013. Karami, S., Sabzalian, M. R., ve Rahimmalek, M., Seed polyphenolic profile, antioxidative activity, and fatty acids composition of wild and cultivated Carthamus species. Chemistry and Biodiversity, 15(6), e1700562. https://doi.org/10.1002/cbdv.201700562, 2018. Khalid, N., Khan, R. S., Hussain, M. I., Farooq, M., Ahmad, A., ve Ahmed, I., A comprehensive characterisation of safflower oil for its potential applications as a bioactive food ingredient-A review. Trends in Food Science & Technology, 66, 176–186. https://doi.org/10.1016/j.tifs.2017.06.009, 2017. Kim, D. H., Moon, Y. S., Park, T. S., ve Son, J. H., Serotonins of safflower seeds play a key role in anti-inflammatory effect in lipopolysaccharide-stimulated RAW 264.7 macrophages. Journal of Plant Biotechnology, 42(4), 364–369. https://doi.org/10.5010/JPB.2015.42.4.364, 2015. Kim, E. O., Lee, J. Y., ve Choi, S. W., Quantitative changes in phenolic compounds of safflower (Carthamus tinctorius L.) seeds during growth and processing. Preventive Nutrition and Food Science, 11(4), 311–317. https://doi.org/10.3746/jfn.2006.11.4.311, 2006. Kim, E. O., Lee, K. T., ve Choi, S. W., Chemical comparison of germinated-and ungerminated-safflower (Carthamus tinctorius) seeds. Journal of the Korean Society of Food Science and Nutrition, 37(9), 1162–1167. https://doi.org/10.3746/jkfn.2008.37.9.1162, 2008. Kim, E. O., Oh, J. H., Lee, S. K., Lee, J. Y., ve Choi, S. W., Antioxidant properties and quantification of phenolic compounds from safflower (Carthamus tinctorius L.) seeds. Food Science and Biotechnology, 16(1), 71–77. 2007. Kim, J. H., Park, J. H., Kim, J. K., Lee, J. M., ve Moon, K. D., Effect of pretreatment conditions on effective components of extracts from safflower (Carthamus tinctorius L.) seed. Journal of the Korean Society of Food Science and Nutrition, 31(3), 367–372. https://doi.org/10.3746/jkfn.2002.31.3.367, 2002. Kim, J. H., He, M. T., Kim, M. J., Yang, C. Y., Shin, Y. S., Yokozawa, T., Park, C. H., ve Cho, E. J., Safflower (Carthamus tinctorius L.) seed attenuates memory impairment induced by scopolamine in mice via regulation of cholinergic dysfunction and oxidative stress. Food & Function, 10(6), 3650–3659. 2019. Kiprovski, B., Jaćimović, S., Grahovac, N., Zeremski, T., ve Marjanović-Jeromela, A., Seed nutrients and bioactive compounds of underutilized oil crop Carthamus tinctorius L. Ratarstvo i Povrtarstvo/Field and Vegetable Crops Research, 58(2), 46–52. 2021. Kobuk, M., Ekinci, K., ve Erbaş, S., Aspir (Carthamus tinctorius L.) genotiplerinin fiziksel ve kimyasal özelliklerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(1), 89–96. https://doi.org/10.18016/ksutarimdoga.vi.455408, 2019. Koyama, N., Kuribayashi, K., Seki, T., Kobayashi, K., Furuhata, Y., Suzuki, K., Arisaka, H., Nakano, T., Amino, Y., ve Ishii, K., Serotonin derivatives, major safflower (Carthamus tinctorius L.) seed antioxidants, inhibit low-density lipoprotein (LDL) oxidation and atherosclerosis in apolipoprotein E-deficient mice. Journal of Agricultural and Food Chemistry, 54(14), 4970–4976. https://doi.org/10.1021/jf060254p, 2006. Krishnamurthy, K., Khurana, H. K., Soojin, J., Irudayaraj, J., ve Demirci, A., Infrared heating in food processing: an overview. Comprehensive Reviews in Food Science and Food Safety, 7(1), 2–13. https://doi.org/10.1111/j.1541-4337.2007.00024.x, 2008. Laçin, M., Effects of Infrared Treatment on Some Constituents, Functional Properties and Mucilage Properties of Chia Seed, Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2023. Lale, A., ve Keskin, S. Ö., Kızılötesi, Mikrodalga, Ultrases Teknolojileri ve Kombinasyonları Kullanılarak Modifiye Edilmiş Doğal Biyopolimerlerin Çeşitli Özellikleri Üzerine Bir Derleme. Gıda, 46(4), 785–802. https://doi.org/10.15237/gida.GD21022, 2021. Lee, K.-S., Kim, Y.-H., ve Chung, N.-J., Determination and isolation of antioxidative serotonin derivatives, N-(p-Coumaroyl) serotonin and N-feruoylserotonin from safflower seeds. Korean Journal of Crop Science, 53(2), 171–178. 2008. Lee, Y. C., Kim, I. H., Chang, J., Rhee, Y. K., Oh, H. I., ve Park, H. K., Chemical composition and oxidative stability of safflower oil prepared with expeller from safflower seeds roasted at different temperatures. Journal of Food Science, 69(1), FCT33–FCT38. 2004. Lisonbee, L. D., Villalba, J. J., ve Provenza, F. D., Effects of tannin on selection by sheep of forages containing alkaloids, tannins and saponins. Journal of the Science of Food and Agriculture, 89(15), 2668–2677. https://doi.org/10.1002/jsfa.3772, 2009. López-Lázaro, M., Distribution and biological activities of the flavonoid luteolin. Mini Reviews in Medicinal Chemistry, 9(1), 31–59. https://doi.org/10.2174/138955709787001712, 2009. Mani, V., Natesan, K., Choi, J.-W., Swamy, M. K., ve Vasamsetti, B. M. K., Chapter 6, Safflower (Carthamus tinctorius) Metabolites and Their Pharmacological Uses. In Phytochemical Genomics, Plant Metabolomics and Medicinal Plant Genomics (pp. 127–145). https://doi.org/10.1007/978-981-19-5779-6_6, 2022. Manyatsi, T. S., Al-Hilphy, A. R., Majzoobi, M., Farahnaky, A., ve Gavahian, M., Effects of infrared heating as an emerging thermal technology on physicochemical properties of foods. Critical Reviews in Food Science and Nutrition, 63(24), 6840–6859. https://doi.org/10.1080/10408398.2022.2043820, 2023. Mariod, A. A., Ahmed, S. Y., Abdelwahab, S. I., Cheng, S. F., Eltom, A. M., Yagoub, S. O., ve Gouk, S. W., Effects of roasting and boiling on the chemical composition, amino acids and oil stability of safflower seeds. International Journal of Food Science & Technology, 47(8), 1737–1743. https://doi.org/10.1111/j.1365-2621.2012.03028.x, 2012. McCURDY, S. M., Infrared processing of dry peas, canola, and canola screenings. Journal of Food Science, 57(4), 941–944. https://doi.org/10.1111/j.1365-2621.1992.tb14329.x, 1992. Mine, M., Mizuguchi, H., ve Takayanagi, T., Kinetic analyses of two-steps oxidation from L-tyrosine to L-Dopaquinone with tyrosinase by capillary electrophoresis/dynamic frontal analysis. Analytical Biochemistry, 655, 114856. https://doi.org/10.1016/j.ab.2022.114856, 2022. Mohamed Ahmed, I. A., Musa Özcan, M., Uslu, N., Juhaimi, F. A. L., Osman, M. A., Alqah, H. A. S., Ghafoor, K., ve Babiker, E. E., Effect of microwave roasting on color, total phenol, antioxidant activity, fatty acid composition, tocopherol, and chemical composition of sesame seed and oils obtained from different countries. Journal of Food Processing and Preservation, 44(10), e14807. https://doi.org/10.1111/jfpp.14807, 2020. Nagatsu, A., Zhang, H., Mizukami, H., Okuyama, H., Sakakibara, J., Tokuda, H., ve Nishino, H., Tyrosinase inhibitory and anti-tumor promoting activities of compounds isolated from safflower (Carthamus tinctorius L.) and cotton (Gossypium hirsutum L.) oil cakes. Natural Product Letters, 14(3), 153–158. https://doi.org/10.1080/10575630008041225, 2000. Obaid, R. J., Mughal, E. U., Naeem, N., Sadiq, A., Alsantali, R. I., Jassas, R. S., Moussa, Z., ve Ahmed, S. A., Natural and synthetic flavonoid derivatives as new potential tyrosinase inhibitors: A systematic review. RSC Advances, 11(36), 22159–22198. https://doi.org/10.1039/d1ra03196a, 2021. Orhan, N., Hoçbaç, S., Orhan, D. D., Asian, M., ve Ergun, F., Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey. Iranian Journal of Basic Medical Sciences, 17(6), 426. 2014. Ozkan, K., Bekiroglu, H., Bayram, Y., Sagdic, O., ve Erbas, S., In vitro bioaccessibility, antioxidant and antibacterial activities of three different safflower (Carthamus tinctorius L.) genotypes. Food Science and Technology, 42, e08921. https://doi.org/10.1590/fst.08921, 2021. Papoutsis, K., Zhang, J., Bowyer, M. C., Brunton, N., Gibney, E. R., ve Lyng, J., Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chemistry, 338, 128119. https://doi.org/10.1016/j.foodchem.2020.128119, 2021. Park, C. H., Lee, A. Y., Kim, J. H., Seong, S. H., Jang, G. Y., Cho, E. J., Choi, J. S., Kwon, J., Kim, Y. O., ve Lee, S. W., Protective effect of safflower seed on cisplatin-induced renal damage in mice via oxidative stress and apoptosis-mediated pathways. The American Journal of Chinese Medicine, 46(01), 157–174. https://doi.org/10.1142/S0192415X1850009X, 2018. Park, J.-H., Kim, K.-J., Kim, J.-C., Kim, S.-J., ve Park, S.-D., Effects of Roasting Conditions on Components of Safflower (Carthamus tinctorius L.) Seed. Korean Journal of Medicinal Crop Science, 8(3), 194–200. 2000. Price, M. L., Van Scoyoc, S., ve Butler, L. G., A critical evaluation of the vanillin reaction as an assay for tannin in sorghum grain. Journal of Agricultural and Food Chemistry, 26(5), 1214–1218. 1978. Purohit, P., Rawat, H., Verma, N., Mishra, S., Nautiyal, A., Bhatt, S., Bisht, N., Aggarwal, K., Bora, A., ve Kumar, H., Analytical approach to assess anti-nutritional factors of grains and oilseeds: a comprehensive review. Journal of Agriculture and Food Research, 100877. https://doi.org/10.1016/j.jafr.2023.100877, 2023. Qurrat ul Ain, Ashiq, U., Jamal, R. A., Saleem, M., ve Mahroof-Tahir, M., Alpha-glucosidase and carbonic anhydrase inhibition studies of Pd(II)-hydrazide complexes. Arabian Journal of Chemistry, 10(4), 488–499. https://doi.org/10.1016/j.arabjc.2015.02.024, 2017. Rao, B. S. N., ve Prabhavathi, T. Tannin content of foods commonly consumed in India and its influence on ionisable iron. Journal of the Science of Food and Agriculture, 33(1), 89–96,1982. Rao, M. A., Rizvi, S. S. H., ve Datta, A. K., Properties Relevant to Infrared Heating of Foods. In Engineering Properties of Foods, Third Edition (pp. 209–235). 2005. Roh, J. S., Han, J. Y., Kim, J. H., & Hwang, J. K., Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis. Biological and Pharmaceutical Bulletin, 27(12), 1976–1978. https://doi.org/10.1248/bpb.27.1976, 2004. Safkan, B., Aspir (Carthamus tinctorius L.) Stigmalarının Aroma ve Bazı Kalite Parametrelerinin Belirlenmesi, Yüksek Lisans Tezi, Çukurova Üniversitesi Fen bilimleri Enstitüsü, Adana, 2023. Sakare, P., Prasad, N., Thombare, N., Singh, R., ve Sharma, S. C., Infrared drying of food materials: Recent advances. Food Engineering Reviews, 12(3), 381–398. https://doi.org/10.1007/s12393-020-09237-w, 2020. Satrianegara, F., Tahar, N., Rukmana, R., Rauf, A., Rahmi, R., Putri, S. S., ve Hamzah, N., The Effect of Various Extraction Methods and Solvents on the Phytochemical Contents and Antioxidant Capacities of Safflower Florets (Carthamus Tinctorius L.) from South Sulawesi. Trends in Sciences, 21(7), 7576. https://doi.org/10.48048/tis.2024.7576, 2024. Semwal, R. B., Semwal, D. K., Combrinck, S., Trill, J., Gibbons, S., ve Viljoen, A., Acacetin- A simple flavone exhibiting diverse pharmacological activities. Phytochemistry Letters, 32, 56–65. https://doi.org/10.1016/j.phytol.2019.04.021, 2019. Seo, I. H., ve Choi, S. W., Preparation of high quality safflower (Carthamus tinctorius L.) seed extract by high-pressure extraction process. Preventive Nutrition and Food Science, 14(4), 373–377. https://doi.org/10.3746/jfn.2009.14.4.373, 2009. Singhal, G., Singh, P., Bhagyawant, S. S., ve Nidhi, S., Anti-nutritional factors in safflower (Carthamus tinctorius L) seeds and their pharmaceutical applications. MOJ Drug Design Development & Therapy, 3(2), 46–50. https://doi.org/10.15406/mojddt.2019.03.00079, 2019. Singhal, G., Singh, P., Bhagyawant, S. S., ve Srivastava, N., Safflower Crop: Comprehensive Review with International and National Status. World Journal of Pharmacy and Pharmaceutical Sciences, 10(12). https://doi.org/10.20959/wjpps202112-20801, 2021. Singleton, V. L., Orthofer, R., ve Lamuela-Raventós, R. M., [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (Vol. 299, pp. 152–178). Elsevier. https://doi.org/10.1016/S0076-6879(99)99017-1, 1999. Subaşı, İ., Aspir (Carthamus tinctorius L.) Genotiplerinde Agro-Morfolojik ve Kalite Özellikleri ile Genotip X Çevre İlişkilerinin Araştırılması, Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2019. Taha, E., ve Matthäus, B., Effect of roasting temperature on safflower seeds and oil. Journal of Food and Dairy Sciences, 9(3), 103–109. https://doi.org/10.21608/jfds.2018.35413, 2018. Takahashi, T., ve Miyazawa, M., Synthesis and structure–activity relationships of phenylpropanoid amides of serotonin on tyrosinase inhibition. Bioorganic & Medicinal Chemistry Letters, 21(7), 1983–1986. https://doi.org/10.1016/j.bmcl.2011.02.028, 2011. Takahashi, T., ve Miyazawa, M., Potent α‐glucosidase inhibitors from safflower (Carthamus tinctorius L.) seed. Phytotherapy Research, 26(5), 722–726. https://doi.org/10.1002/ptr.3622, 2012. Talukdar, D., Antioxidant potential and type II diabetes related enzyme inhibition properties of raw and processed legumes in Indian Himalayas. Journal of Applied Pharmaceutical Science, 3(3), 13–19. https://doi.org/10.7324/JAPS.2013.30303, 2013. Tayebeh, B., Soraya, K., ve Khaneghah, A. M., Antioxidant and antibacterial activity of ethanolic extract of safflower with contrasting seed coat colors. Quality Assurance and Safety of Crops & Foods, 13(2), 94–100. https://doi.org/10.15586/qas.v13i2.866, 2021. Thakur, A., Sharma, V., ve Thakur, A., An overview of anti-nutritional factors in food. Int. J. Chem. Stud, 7(1), 2472–2479, 2019. Tuncel, N. Y., ve Tuncel, N. B., Kızılötesi teknolojisi ve gıda işlemedeki kullanımı. Akademik Gıda, 14(2), 196–203. 2016. Vrancheva, R., Popova, A., Mihaylova, D., ve Krastanov, A., Phytochemical Analysis, In Vitro Antioxidant Activity and Germination Capability of Selected Grains and Seeds. Jordan Journal of Biological Sciences, 13(3). 2020. Wu, C., Yan, J., ve Li, W., Acacetin as a Potential Protective Compound against Cardiovascular Diseases. Evidence-Based Complementary and Alternative Medicine, 2022. https://doi.org/10.1155/2022/6265198, 2022. Xiang, B., Zhou, X., Qin, D., Li, C., ve Xi, J., Infrared assisted extraction of bioactive compounds from plant materials: Current research and future prospect. Food Chemistry, 371, 131192. https://doi.org/10.1016/j.foodchem.2021.131192, 2022. Yalcin, S, ve Başman, A., Effects of infrared treatment on tocopherols, total phenolics and antioxidant activity of soybean samples. Quality Assurance and Safety of Crops & Foods, 8(2), 273–281. https://doi.org/10.3920/QAS2015.0702, 2016. Yalcin S., ve Başman, A., Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples. Food Chemistry, 169, 203–210. https://doi.org/10.1016/j.foodchem.2014.07.114, 2015. Yeloojeh, K. A., Saeidi, G., ve Sabzalian, M. R., Drought stress improves the composition of secondary metabolites in safflower flower at the expense of reduction in seed yield and oil content. Industrial Crops and Products, 154, 112496. https://doi.org/10.1016/j.indcrop.2020.112496, 2020. Yeom, S. H., Gam, D. H., Kim, J. H., ve Kim, J. W., Development of ultrasound-assisted extraction to produce skin-whitening and anti-wrinkle substances from safflower seed. Molecules, 27(4), 1296. https://doi.org/10.3390/molecules27041296, 2022. Yılmaz, A., Yılmaz, H., Arslan, Y., Çiftçi, V., ve Baloch, F., Ülkemizde alternatif yağ bitkilerinin durumu. Avrupa Bilim ve Teknoloji Dergisi, 22, 93–100. https://doi.org/10.31590/ejosat.843220, 2021. Yu, S. Y., Lee, Y. J., Kang, S. N., Lee, S. K., Jang, J. Y., Lee, H. K., Lim, J. H., & Lee, O. H., Analysis of Food Components of Carthamus Tinctorius L. Seed and its Antimicrobial Activity. Korean Journal of Food Preservation, 20(2), 227–233. https://doi.org/10.11002/kjfp.2013.20.2.227, 2013a. Yu, S. Y., Lee, Y. J., Kim, J. D., Kang, S. N., Lee, S. K., Jang, J. Y., Lee, H. K., Lim, J. H., ve Lee, O. H., Phenolic composition, antioxidant activity and anti-adipogenic effect of hot water extract from safflower (Carthamus tinctorius L.) seed. Nutrients, 5(12), 4894–4907. https://doi.org/10.3390/nu5124894, 2013b. Yuan, Y., Jin, W., Nazir, Y., Fercher, C., Blaskovich, M. A. T., Cooper, M. A., Barnard, R. T., ve Ziora, Z. M., Tyrosinase inhibitors as potential antibacterial agents. European Journal of Medicinal Chemistry, 187, 111892. https://doi.org/10.1016/j.ejmech.2019.111892, 2020. Zhang, G., Li, Z., Chatzifragkou, A., ve Charalampopoulos, D., Effect of processing methods on the phytochemical content of melon seeds (Cucumis melo L.). Future Foods, 100399. https://doi.org/10.1016/j.fufo.2024.100399, 2024. Zhang, H. L., Nagatsu, A., Watanabe, T., ve Okuyama, H., Antioxidative compounds isolated from safflower (Carthamus tinctorius L.) oil cake. Chemical and Pharmaceutical Bulletin, 45(12), 1910–1914. https://doi.org/10.1248/cpb.45.1910, 1997. Zhou, X., Tang, L., Xu, Y., Zhou, G., ve Wang, Z., Towards a better understanding of medicinal uses of Carthamus tinctorius L. in traditional Chinese medicine: a phytochemical and pharmacological review. Journal of Ethnopharmacology, 151(1), 27–43. https://doi.org/10.1016/j.jep.2013.10.050, 2014. Žilić, S., Mogol, B. A., Akıllıoğlu, G., Serpen, A., Delić, N., ve Gökmen, V., Effects of extrusion, infrared and microwave processing on Maillard reaction products and phenolic compounds in soybean. Journal of the Science of Food and Agriculture, 94(1), 45–51. https://doi.org/10.1002/jsfa.6210, 2014. Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., ve Saboury, A. A., A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309. https://doi.org/10.1080/14756366.2018.1545767, 2019.tr_TR
dc.identifier.urihttps://hdl.handle.net/11655/36580
dc.description.abstractSafflower (Carthamus tinctorius L.), a member of Asteraceae/Compositae family, is a herbaceous annual oilseed crop. Safflower seeds, with their phenolic and flavonoid components, as well as serotonin derivatives, can exhibit health-beneficial effects such as antidiabetic, antimicrobial and anti-inflammatory effects, antioxidant activity, α-glucosidase inhibitory and tyrosinase inhibitory effects. Infrared (IR) treatment has obtained a great interest in the food industry, due to its advantages (short processing time, direct heat penetration, homogeneous temperature distribution, energy saving and low cost) over conventional heating. Infrared treatment has been used for roasting, drying, cooking, sterilization, enzyme inactivation, and for enhancing extraction of many bioactive components (polyphenols, flavonoids, etc.) by disintegrating the structure. To the best of our knowledge, in literature there is no study about the effects of infrared treatment on some components and properties of safflower seeds. Therefore, in this study, safflower seeds (cv. Hasankendi) were infrared treated at different powers (800W, 1000W and 1200W) and times (10 and 20 min). Effects of infrared treatment on protein, ash, color, total phenolic content, total flavonoid content, antioxidant activity (DPPH and CUPRAC), phenolic profile (chlorogenic acid, p-coumaric acid, ferulic acid, rutin, quercetin, luteolin and acacetin), serotonin derivatives (N-(p-coumaroyl) serotonin and N-feruloyl serotonin), tannin content, α-glucosidase inhibitory and tyrosinase inhibitory effects of safflower samples were investigated. Infrared treatment caused a gradual increase (except 800W-10min) in total phenolic content, as the power and time increased. For total flavonoid content, a gradual increase up to 1000W-20min and then a slight decrease at 1200W was observed. As compared to control, infrared treatment at 800W caused an increase in the radical scavenging activity while infrared treatment at 1000W and 1200W caused a decrease. For total antioxidant capacity, lower values were observed for safflower samples infrared treated at 800W, 1000W and 1200W-10min while a higher value was observed for 1200W-20min, as compared to control. Infrared treatment did not cause a significant change in chlorogenic acid, ferulic acid, luteolin (except 1000W-20min and 1200W) and rutin (except 800W-20min and 1200W-20min) content, as compared to control. For other infrared treatments, a significant decrease was observed. A gradual significant decrease in quercetin content was observed for 800W and 1000W-10min treatments. For other infrared treatments, quercetin was not detected. p-coumaric acid was not detected in all samples. Acacetin was first detected at 1000W-20min, and a significant increase was observed as the infrared power and time increased. A significant increase in N-(p-coumaroyl) serotonin content was observed for 800W-20min, 1000W, and 1200W-10min, as compared to control. A slight increase in N-feruloyl serotonin content was observed for 800W and 1000W-10min, and this increase was found to be significant for 800W-20min. For other infrared treatments, a slight decrease was observed for both serotonin derivatives, but this decrease was significant only for 1200W-20min. α-glucosidase inhibition of control sample was 74.23% and decreased to 74.22–69.15% by infrared treatment. Infrared treatment (except 800W-10min) caused an increase in tyrosinase inhibition of safflower samples, and this increase was found to be significant for 1000W-20min and 1200W. Tannin content of safflower samples increased by infrared treatment.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectAspir tohumutr_TR
dc.subjectTirozinaz İnhibisyonu
dc.subjectα-glukozidaz inhibisyonu
dc.subjectSerotonin türevleri
dc.subjectFenolik profil
dc.subjectAntioksidan aktivite
dc.subjectToplam flavonoid
dc.subjectToplam fenolik
dc.subjectKızılötesi
dc.subject.lcshGıda mühendisliğitr_TR
dc.titleKızılötesi Uygulamasının Aspir (Carthamus tinctorius L.) Tohumunun Bazı Bileşenleri ve Özellikleri Üzerine Etkisitr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetAspir (Carthamus tinctorius L.), Asteraceae veya Compositae familyasına ait otsu, yıllık yağ bitkisidir. Aspir tohumu, içerdiği fenolik ve flavonoid bileşenler, ayrıca serotonin türevleri ile antidiyabetik, antimikrobiyal ve anti-inflamatuar etki, antioksidan aktivite, α-glukozidaz inhibitör ve tirozinaz inhibitör etki gibi sağlığa faydalı etkiler gösterebilmektedir. Kızılötesi (IR, infrared) uygulamasının, geleneksel yöntemlere kıyasla avantajlarından (kısa işlem süresi, direkt ürüne penetrasyon, homojen sıcaklık dağılımı, enerji tasarrufu ve düşük maliyet) dolayı gıda endüstrisinde kullanımı giderek artmaktadır. Kızılötesi uygulaması kavurma, kurutma, pişirme, sterilizasyon, enzim inaktivasyonu ve yapıyı açarak birçok biyoaktif bileşenin (polifenoller, flavonoidler vb.) ekstraksiyonunu arttırmak için kullanılmaktadır. Bilgimiz dahilinde, literatürde kızılötesi uygulamasının aspir tohumunun bazı bileşenleri ve özellikleri üzerine etkisini inceleyen bir çalışma bulunmamaktadır. Bu nedenle, bu tez kapsamında aspir tohumlarına (Hasankendi çeşidi) farklı güç (800W, 1000W ve 1200W) ve sürelerde (10 ve 20dk) kızılötesi uygulanmıştır. Kızılötesi uygulamasının aspir örneklerinin protein, kül, renk, toplam fenolik madde, toplam flavonoid madde, antioksidan aktivite (DPPH ve CUPRAC), fenolik bileşen profili (klorojenik asit, p-kumarik asit, ferulik asit, rutin, kuersetin, luteolin ve akasetin), serotonin türevleri (N-(p-coumaroyl) serotonin ve N-feruloyl serotonin), tanen miktarı, α-glukozidaz ve tirozinaz enzim inhibisyonu üzerine etkisi araştırılmıştır. Kızılötesi uygulaması, artan güç ve süre ile birlikte, toplam fenolik madde miktarında kademeli bir artışa (800W-10dk hariç) neden olmuştur. Toplam flavonoid madde miktarı için, 1000W-20dk örneği de dahil olmak üzere kademeli bir artış, sonrasında 1200W’ta hafif azalma gözlenmiştir. Kızılötesi uygulaması, 800W’ta radikal yakalama aktivitesinde kontrol örneğine kıyasla artışa neden olurken 1000W ve 1200W azalmaya neden olmuştur. Toplam antioksidan kapasite için 800W, 1000W ve 1200W-10dk kızılötesi uygulanmış aspir örneklerinde kontrol örneğine kıyasla daha düşük değerler gözlenirken 1200W-20dk örneğinde daha yüksek bir değer gözlenmiştir. Kızılötesi uygulaması, klorojenik asit, ferulik asit ve luteolin miktarlarını (1000W-20dk ve 1200W hariç) ayrıca rutin miktarını (800W-20dk ve 1200W-20dk hariç) kontrol örneğine kıyasla istatistiksel olarak önemli düzeyde değiştirmemiştir. Diğer kızılötesi güçlerinde bu bileşenlerin miktarlarında kontrol örneğine kıyasla istatistiksel olarak önemli bir azalma gözlenmiştir. 800W ve 1000W-10dk kızılötesi uygulaması ile kuersetin miktarında istatistiksel olarak önemli kademeli bir azalma gözlenmiştir. Diğer kızılötesi güçlerinde kuersetin tespit edilememiştir. Tüm aspir örneklerinde p-kumarik asit tespit edilememiştir. Akasetin ilk olarak 1000W-20dk kızılötesi uygulamasıyla birlikte aspir örneklerinde tespit edilebilmiş ve artan kızılötesi gücü ve süresi ile birlikte istatistiksel olarak önemli bir artış gözlenmiştir. N-(p-coumaroyl) serotonin miktarı incelendiğinde 800W-20dk, 1000W ve 1200W-10dk kızılötesi uygulamasıyla kontrol örneğine kıyasla istatistiksel olarak önemli bir artış gözlenmiştir. N-feruloyl serotonin miktarında 800W ve 1000W-10dk kızılötesi uygulamasıyla kontrol örneğine kıyasla bir miktar artış gözlenmiş, 800W-20dk uygulamasında bu artış istatistiksel olarak önemli bulunmuştur. Serotonin türevlerinin her ikisinde de diğer kızılötesi uygulamalarında bir miktar azalma gözlenmiş, sadece 1200W-20dk uygulaması için gözlenen azalma istatistiksel olarak önemli bulunmuştur. Kontrol aspir örneğinin α-glukozidaz inhibisyonu %74.23 olarak belirlenmiş, kızılötesi uygulaması ile %74.22-69.15 aralığına düşmüştür. Kızılötesi uygulaması (800W-10dk hariç), aspir örneklerinin tirozinaz inhibisyonunu kontrol örneğine kıyasla arttırmış ve bu artış 1000W-20dk ve 1200W uygulamaları için istatistiksel olarak önemli bulunmuştur. Kızılötesi uygulaması ile aspir örneklerinin tanen miktarı artmıştır.tr_TR
dc.contributor.departmentGıda Mühendisliğitr_TR
dc.embargo.terms6 aytr_TR
dc.embargo.lift2025-07-08T10:17:38Z
dc.fundingYoktr_TR
dc.subtypeprojecttr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record