Basit öğe kaydını göster

dc.contributor.advisorKaplan Can, Hatice
dc.contributor.authorDemirel, Müge
dc.date.accessioned2024-10-15T07:20:44Z
dc.date.issued2024
dc.date.submitted2024-01-04
dc.identifier.citation[1] Nazari M. H., Shi X., ‘‘Polymer-based nanocomposite coatings for anticorrosion applications’’, Industrial Applications for Intelligent Polymers and Coatings, sayfa 373-399,2016, New York. doi: 10.1007/978-3-319-26893-4_18 [2] Stankiewicz A., Szczygieł I., Szczygieł B., ‘‘Self-healing coatings in anti-corrosion applications’’, J Mater Sci, vol.48, sayfa 8041-8051, 2013. Doi: 10.1007/s10853-013-7616-y [3] Artsonakis I., Balaskas A. C., Koumoulos E. P., Charitidis C. A., Kordas G., ‘‘Evaluation of corrosion resistance of mahnesium alloy ZK10 coated with hybrid organic – inorganic film including containers, Corrosion Science, vol.65 , 2012. doı:10.1016/j.corsci.2012.08.052 [4] Esser Kahn A. P., Odom S. A., Sottos N. R., White S. R., Moore J. S., ‘‘ Triggered Release from Polymer Capsules’’, Macromolecules, sayfa 5539-5553, 2011. Doi:https://doi.org/10.1021/ma201014n [5]Korkmaz, Ö. E., “Corrosion Investigation, Prevention and Non-Destructive Testing of Aluminum Materials Used in Aircraft”, Yildiz Technical University, Institute of Science and Technology, 2010, İstanbul. [6] Ceylan Ç., Duran B., Koçyiğit O. F., Koçer C., Doğan B., Hacaloğlu T., Şengönül C. M., Kaftanoğlu B., ‘‘Havacılık Sanayiinde Kullanılan Alüminyum Alaşımlarının Korozyona Karşı Direncini Artırmak Üzere Yüzey Kaplamalarının Araştırılması’’, Mühendis ve Makina,2020. [7] Abdullayev E., Shchukin D. G., Lvov Y. M., ‘‘Halloysite Tubes as Nanocontainers for Anticorrosion Coating with Benzotriazole’’, ACS Applied Materials & Interfaces, vol. 1(7), sayfa 1437-1443, 2009. doı: 10.1021/am9002028 [8] Shchukin D. G., Lamaka S.V., Yasakau K.A., Zheludkevich M. L., Ferreiara M. G. S.,Möhwald H., ‘‘Active Anticorrosion Coatings with Halloysite Nanocontainers’’, J. Phys. Chem., vol. 112, sayfa 958-964, 2008. [9] Massaro M., Lazzara G., Noto R., Riela S., ‘‘Halloysite nanotubes: a green resource for materials and life sciences’’, Rendiconti Lincei. Scienze Fisiche e Naturali, 2020. Doi: https://doi.org/10.1007/s12210-020-00886-x [10] Sagare R. D., Dasankoppa F. S., Sholapur H. N., Burga K., ‘‘Halloysıte Nanotubes: Design, Characterization And Applications. A Review’’, Farmacia, vol.69-2, 2021. https://doi.org/10.31925/farmacia.2021.2.3 [11] Grigoriev D., Shchukina E., Shchukin D. G., ‘‘Nanocontainers for Self-Healing Coatings’’, Adv. Mater. Interfaces, vol.4, 2017 [12] H. Wei, Y. Wang, G. Jiang, N.Z. Shen, D. Jiang, X. Zhang, X. Yan, J. Zhu, Q. Wang, L. Shao, H. Lin, S. Wei, Z. Guo ‘‘Advanced micro/nanocapsules for self-healing smart anticorrosion coatings’’ J. Mater. Chem. A, 3 (2015), sayfa 469-480. [13] E. Abdullayev, V. Abbasov, A. Tursunbayeva, V. Portnov, H. Ibrahimov, G. Mukhtarova, Y. Lvov ‘‘Self-healing coatings based on halloysite clay polymer composites for protection of copper alloys’’, ACS Appl. Mater. Interfaces, 5 (2013), sayfa 4464-4471. [14] Zaki Ahmad Principles of Corrosion Engineering and Corrosion Control Elsevier Science & Technology Books (2006) [15] Zahidah K.A., Kakooei S., Ismail M. C., Raja P.B., ‘’Halloysite Nanotubes as nanocontainer fors mart coating application : A review, Progress in Organic Coatings’’,volume 111, Ekim 2017, sayfa 175-185 [16] Y.M. Lvov, D.G. Shchukin, H. Mohwald, R.R., ‘‘Price Halloysite clay nanotubes for controlled release of protective agents’’, ACS Appl. Mater. Interfaces, 2 (2008), sayfa 814-820. [17] M. Samadzadeh, S.H. Boura, M.P. Peikari, S.M. Kasiriha, A. Ashrafi, M. Samadzadeh, S.H. Boura, M.P. Peikari, S.M. Kasiriha, A. Ashrafi, ‘‘A review on self-healing coatings based on micro/nanocapsules’’ Prog. Org. Coatings, 68 (2010), sayfa 159-164. [18] D. Shchukin, H. Möhwald, A coat of many functions Mater. Sci., 341 (2013), sayfa 1458-1459. [19] A. Popoola, O.E. Olorunniwo, O.O. Ige ‘‘Corrosion resistance through the application of anti-corrosion coatings’’, Dev. Corros. Prot., 2 (2014), sayfa 241-270. [20] K. Chung, S. Lee, M. Park, P. Yoo, Y. Hong ‘‘Preparation and characterization of microcapsule-containing self-healing asphalt’’, J. Ind. Eng. Chem., 29 (2015), sayfa 330-337. [21] R. Meirowitz, ‘‘Microencapsulation technology for coating and lamination of textiles Smart Text. Coatings Laminates’’, 3 (2010), sayfa 125-154. [22] A.S.H. Makhlouf, ‘‘Smart Composite Coatings and Membranes Woodhead’’, (2016). [23] I.A. Kartsonakis, A.C. Balaskas, E.P. Koumoulos, C.A. Charitidis, G. Kordas, ‘‘Evaluation of corrosion resistance of magnesium alloy ZK10 coated with hybrid organic - inorganic film including containers’’, Corros. Sci., 65 (2012), sayfa 481-493. [24] D.V. Andreeva, D.G. Shchukin, ‘‘Smart self-repairing protective coating’’, Mater. Today, 11 (2008), sayfa 24-30, doi: 10.1016/S1369-7021(08)70204-9 [25] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, B. Delvaux, ‘‘Halloysite clay minerals–a review Clay Miner.’’, 40 (2005), sayfa 383-426, doi: 10.1180/0009855054040180 [26] L. Yu, H. Wang, Y. Zhang, B. Zhang, J. Liu, E. Sci, ‘‘Recent advances in halloysite nanotube derived composites for water treatment’’, Environ. Sci. Nano, 3 (2016), sayfa 28-44, doi: 10.1039/C5EN00149H [27] A. Stankiewicz, M.B. Barker, ‘‘Development of self-healing coatings for corrosion protection on metallic structures’’ Smart Mater. Struct. (2016), doi:10.1088/0964-1726/25/8/084013 [28] V. Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, S.Leporatti, ‘‘Cytocompatibility and uptake of halloysite clay nanotubes Biomacromolecules’’,11 (2010), sayfa 820-826, doi:10.1021/bm9014446 [29] H.A. Duarte, M.P. Lourenço, T. Heine, L. Guimarães, ‘‘Clay mineral nanotubes: stability, structure and properties’’ Stoichiometry and Materials Science − When Numbers Matter. (2009), sayfa 3-25, doi:10.5772/34459 [30] M. Liu, Z. Jia, D. Jia, C. Zhou, ‘‘Recent advance in research on halloysite nanotubes- polymer nanocomposite’’, Prog. Polym. Sci., 39 (2014), sayfa 1498-1525, doi:10.1016/j.progpolymsci.2014.04.004 [31] R. Kamble, M. Ghag, S. Gaikawad, B.K. Panda, ‘‘Halloysite nanotubes and applications: a review’’, J. Adv. Sci. Res., 3 (2012), sayfa 25-29. [32] P. Yuan, D. Tan, F. Annabi-Bergaya, ‘‘Properties and applications of halloysite nanotubes: recent research advances and future prospects’’, Appl. Clay Sci., 112–113 (2015),sayfa 75-93, doi: 10.1016/j.clay.2015.05.001 [33] Shchukin D.G., Shchukina E., ‘‘Nanocontainer-based active systems: from self-healing coatings to thermal energy storage’’ , Langmuir, 35 (2019), sayfa 8603-8611. [34] Shchukin D.G., Zheludkevich M., Möhwald H.J., ‘‘Feedback active coatings based on incorporated nanocontainers’’, J. Mater. Chem., 16 (2006), sayfa 4561-4566. [35] Zehra S., Mobin M., Aslam R., Bhat S.U.I., ‘‘Nanocontainers: A comprehensive review on their application in the stimuli-responsive smart functional coatings, Progress In Organic Coating’’, Volume 176, Mart 2023, doi: https://doi.org/10.1016/j.porgcoat.2022.107389 [36] Bazylińska U., Wawrzyńczyk D., Kulbacka J., Frąckowiak R., Cichy B., Bednarkiewicz A., Samoć M., Wilk K.A., ‘‘Polymeric nanocapsules with up-converting nanocrystals cargo make ideal fluorescent bioprobes’’, Sci. Rep., 6 (2016), sayfa 1-14. [37] Chenan A., Ramya S., George R., Mudali U.K., ‘‘Hollow mesoporous zirconia nanocontainers for storing and controlled releasing of corrosion inhibitors’’ , Ceram. Int., 40 (2014), sayfa 10457-10463 [38] Graff A., Sauer M., Van Gelder P., Meier W., ‘‘Virus-assisted loading of polymer nanocontainer’’, PNAS, 99 (2002), sayfa 5064-5068. [39] Shchukin D.G., Möhwald H., ‘‘Surface-engineered nanocontainers for entrapment of corrosion inhibitors’’, Adv. Funct. Mater., 17 (2007), sayfa 1451-1458. [40] Hong C.Y., Li X., Pan C.Y., ‘‘Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release’’, J. Mater. Chem., 19 (2009), sayfa 5155-5160. [41] Wei E., Minullina R., Abdullayev E., Fakhrullin R., Mills D., Lvov Y., ‘‘Enhanced efficiency of antiseptics with sustained release from clay nanotubes’’ , RSC Adv., 4 (2014), sayfa 488-494. [42] Nguyen T.A., Assadi A.A., ‘‘Smart nanocontainers: preparation, loading/release processes and applications’’, Kenkyu J. Nanotechnol. Nanosci., 4 (2018), sayfa 01. [43] Zhang F., Ju P., Pan M., Zhang D., Huang Y., Li G., Li X., ‘‘Self-healing mechanisms in smart protective coatings: a review’’, Corros. Sci., 144 (2018), sayfa 74-88. [44] Lvov Y., Decher G., Moehwald H., ‘‘Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine)’’, Langmuir, 9 (1993), sayfa 481-486. [45] Caruso F., ‘‘Nanoengineering of particle surfaces’’, Adv. Mater., 13 (2001), sayfa 11-22. [46] Caruso F., Caruso R.A., Möhwald, ‘‘Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating’’, Science, 282 (1998), sayfa 1111-1114. [47] Andreeva D.V., Skorb E.V., ‘‘Multi- Layer smart coatings for corrosion protection of aluminium alloys and steel’’, Handbook of Smart Coatings for Materials Protection 13, sayfa 307-312 doı : 10.1533/9780857096883.2.307 [48] Lamaka , S.V. , Shchukin , D.G. , Andreeva , D.V. , Zheludkevich , M.L. , Möhwald , H. and Ferreira, ‘‘Sol-gel/polyelectrolyte active corrosion protection system’’, Adv Funct Mater, 18 , sayfa 3137 – 3147 . [49] Farhat , T.R. and Schlenoff, ‘‘Corrosion control using polyelectrolyte multilayers’’, Electrochem Sol-State Lett , 5 , sayfa 13 – 17. [50] Tomcsanyi , L. , Varga , K. , Bartik , I. , Horanyi , G. and Maleczki, ‘’Electrochemical study of the pitting corrosion of aluminium and its alloys – II. Study of the interaction of chloride ions with a passive film on aluminium and initiation of pitting corrosion’’, Electrochem Acta , 34 , sayfa 855 – 859 . [51] Farhat , T.R. and Schlenoff , J.B.,’‘Ion transport and equilibria in polyelectrolyte multilayers’’, Langmuir , 17 , sayfa 1184 – 1192 . [52] DeLongchamp , D.M. and Hammond , P.T. ‘‘Fast ion conduction in layer-bylayer polymer films’’, Chem Mater , 15 , sayfa 1165 – 1173 . [53] Andreeva , D.V. , Fix , D. , Shchukin , D.G. and Möhwald , H., ‘‘Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures ’, Adv Mater , 20 , 2789 – 2794 . [54] Schlenoff , J.B. , Dubas , S.T. and Farhat , ‘‘Sprayed polyelectrolyte multilayers’’, Langmuir , 16 , sayfa 9968 – 9969. [55] Porcel, C.H. , Izquierdo, A. , Ball , V. , Decher , G. , Voegel , J.-C. and Schaaf , ‘‘Ultrathin coatings and (poly(glutamic acid)/polyallylamine) films deposited by continuous and simultaneous spraying’’, Langmuir , 21 , sayfa 800 – 802 . [56] Wang Y., Liu D., Zheng Q., Zhao Q., Zhang H., Ma Y., Fallon J.K., Fu Q., Haynes M.T., Lin G.J.N.L., ‘‘Disulfide bond bridge insertion turns hydrophobic anticancer prodrugs into self-assembled nanomedicines, Nanoletter,’’ 14 (2014), sayfa 5577-5583. [57] Thanh N.T.K., Maclean N., Mahiddine S., ‘‘Mechanisms of nucleation and growth of nanoparticles in solution’’, Chem. Rev., 114 (2014), sayfa 7610-7630. [58] Shutava T.G., Lvov Y.M., ‘‘Nano-engineered microcapsules of tannic acid and chitosan for protein encapsulation’’ , J. Nanosci. Nanotechnol., 6 (2006), sayfa 1655-1661. [59]Angelatos A.S., Radt B., Caruso F., ‘‘Light-responsive polyelectrolyte/gold nanoparticle microcapsules’’, J. Phys. Chem. B, 109 (2005), sayfa 3071-3076. [60] Förster S., Plantenberg T., ‘‘From self-organizing polymers to nanohybrid and biomaterials’’, Angew. Chem., 41 (2002), sayfa 688-714. [61] Shchukina E., Wang H., Shchukin D. G., ‘‘ Nanoconteiner- based self- healing coatings: current progress and future perspectives’’, The Royal Society of Chemistry, vol.55, sayfa 3859-3867, 2019. [62] Can H.K., Üner G., ‘‘Water-soluble anhydride containing alternating copolymers as scale inhibitors Desalination’’, Volume 355, 1 January 2015, sayfa 225-232 [63] Can H.K., Karakus, G. & Tuzcu, N. ‘‘Synthesis, characterization and in vitro antibacterial assessments of a novel modified poly[maleic anhydride-alt-acrylic acid]/acriflavine conjugate’’, Polym. Bull. 71, sayfa 2903–2921 (2014). Doi: https://doi.org/10.1007/s00289-014-1230-2 [64] Erol K., Bülter M. B., Köse D.A. and Can H.K., "Water-soluble polymeric particle embedded cryogels: Synthesis, characterisation and adsorption of haemoglobin" Journal of Polymer Engineering, vol. 41, no. 8, 2021, sayfa 671-680. Doi: https://doi.org/10.1515/polyeng-2020-0285 [65] S.M. Cassemiro, I.R. Grova, et al. ‘‘Interplay Among Electronic Characteristics, Morphology and Device efficiency in Three Fluorene Alternated Copolymers, Synthetic Metals’’, 219 (2016) sayfa 60–66. [66] Rzayev Z.M.O., Şenol B., Söylemez A.E., ‘‘Functional Copolymer/Organo-MMT Nanoarchitectures. VIII. Synthesis, Morphology and Thermal Behavior of Poly(maleic anhydride-altacrylamide) -Organo-MMT Clays Nanohybrids’’, Engineering, 3 (2011) sayfa 73-82. [67] H. Kaplan Can, ‘‘Charge transfer complex formation in in-situ maleic anhydride and N- vinyl caprolactam copolymer and copolymer/organo-montmorillonite nanoarchitectures’’, Journal of Macromolecular Science, Part A Pure and Applied Chemistry, 53 (2016) sayfa 26- 33. [68] A.E. Akgül, ‘‘Akrilamid-Maleik Anhidrit Kopolimer Sentezi ve Monomer Bileşim Oranlarının Belirlenmesi’’, Yüksek Lisans Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir, 2019 [69] Bayrak S., ‘‘Maleik Anhidrit- Akrilik Asit Kopolimeri ile Seramik Kompozitinin Hazırlanması ve Karakterizasyonu’’, Yüksek Lisans Tezi, Hitit Üniversitesi Fen Bilimleri Enstitüsü, Ocak, 2012 [70] Kaplan Can, H., A. L. Doğan, Z. M.O. Rzaev, A. Hasegeli Uner, and A. Güner, “Synthesis, Characterization and Antitumor Activity of Poly(maleic anhydrideco-vinyl acetate-co-acrylic acid)”, Journal Applied of Polymer Science, 100 (2006) sayfa 3425-3432. [71] B.K. Main, T. Medwick, C.L. Bailey, J.H. Shinkani, ‘‘Quantitative analysis of hydroxyurea and urea by proton nuclear magnetic resonance (NMR) spectroscopy’’ Pharma Res., 4 (1987), sayfa 412-415. [72] H. Kaplan-Can, G. Karakus, N. Tuzcu, ‘‘Synthesis, characterization and in vitro antibacterial assessments of a novel modified poly [maleic anhydride-alt-acrylic acid]/acriflavine conjugate’’ , Polym. Bull., 71 (2014) sayfa 2903–2920. [73] Karakuş G., Can H.K., Yağlıoğlu A.Ş., ‘‘Synthesis, structural characterization, thermal behavior and cytotoxic/antiproliferative activity assessments of poly(maleic anhydride-alt- acrylic acid)/hydroxyurea polymer/drug conjugate’’, Journal of Molecular Structure, Volume 1210, 15 Haziran 2020, doi: https://doi.org/10.1016/j.molstruc.2020.127989 [74] R. Akkaya, U. Ulusoy, ‘‘Preparation and Characterization of Poly(acrylamide/maleic acid)-based hydrogels Composites’’, Hacettepe J. Biol. & Chem., 39 (2011) sayfa 359–370. [75] Can H.K, Kavlak S., Güner A.,‘‘Experimental Approaches to Investigation of the Interaction in Between Anhydride Containing Copolymer and Poly(N-vinylPyrrolidone) Blends’’, Polymers & Polymer Composites, 24 (2016) [76] B. Wunderlich, ‘‘Thermal Analysis of Polimeric Materials’’, Springer, Berlin, 2005. [77] B. Willocq, J. Odent, ‘‘Advances in intrinsic self-healing polyurethanes and related composites’’, RSC Advances, 10 (2020) sayfa 13766-13782. [78] Hong G., Cheng H., Meng Y., Lin J., Chen Z., Zhang S., Song W.,‘‘Mussel-Inspired Polydopamine as a Green, Efficient, and Stable Platform to Functionalize Bamboo Fiber with Amino-Terminated Alkyl for High Performance Poly(butylene succinate) Composites’’, Polymers, 4 (2018) sayfa 10. [79] D.A. Skoog, F.J. Holler, ‘‘Enstrümental Analiz Yöntemleri’’, Bilim Yayınevi, 2007. [80] Ismail N.A., Moussa A.M., Kahraman R., Shakoor R.A., ‘‘Study on the corrosion behavior of polymeric nanocomposite coatings containing halloysite nanotubes loaded with multicomponent inhibitör’’, Arabian Journal of Chemistry, 8 Haziran 2022, doi: https://doi.org/10.1016/j.arabjc.2022.104107 [81] Khan, A., Hassanein, A., Habib, S., Nawaz, M., Shakoor, R.A., Kahraman, R., ‘‘Hybrid halloysite nanotubes as smart carriers for corrosion protection’’. ACS Appl. Mater. Interfaces 12, sayfa 37571– 37584, doi: https://doi.org/10.1021/acsami.0c08953. [82] Xu D., Lou C., Huang J., Lu X., Xin Z., Zhou C., ‘‘Effect oh inhibitör-loaded halloysite nanotubes on active corrosion protection of polybenzoxazine coatings on mild steel’’, Progress in Organic Coatings 134, 2019, sayfa 126-133, doi: https://doi.org/10.1016/j.porgcoat.2019.04.021 [83] Santagata M., Johnston C.T., ‘‘A study of nanoconfined water in halloysite’’, Applied Clay Science, Mayıs 2022, doi : https://doi.org/10.1016/j.clay.2022.106467 [84] Liu C., Hou P., Qian B., Hu X., ‘‘Smart healable and reportable anticorrosion based on halloysite nanotubes carrying 8- hydroxyquinoline on steel’’, Journal of Industrial and Engineering Chemistry, Şubat 2023, Sayfa 109-118, doi: https://doi.org/10.1016/j.jiec.2022.10.050 [85] Gao X., Chen F., Han G., Li Q.,“High temperature and pressurized steaming/silane coupling comodification for wood fibers and its effect on the properties of wood fiber/HDPE composites”, Macromolecular Research, 25 (2017) sayfa 141-150. [86] Cavallaro G., Lazzara G., Milioto S., ‘‘Nanocomposites based on halloysite nanotubes and sulphated galactan from red seaweed Gloiopeltis: Properties and delivery capacity of sodium diclofenac’’, International Journal of Biological Macromolecules, Nisan 2023, doi: https://doi.org/10.1016/j.ijbiomac.2023.123645tr_TR
dc.identifier.urihttps://hdl.handle.net/11655/35977
dc.description.abstractThe main purpose of the presented thesis is to synthesize and characterize Smart Halloysite Nanotubes for use in anti-corrosion coatings. When we look at the sectors directly and indirectly affected by corrosion, many fields such as aviation, energy, chemistry, food, oil and gas, pharmacy, machinery and civil engineering can be listed. Today, the aviation sector is the leading sector when considering safety and speed factors. With the precautions taken during production and maintenance work, corrosion damage resulting from the harsh conditions in which the aircraft are found has been tried to be prevented. Material selection and finishing processes during the design process are important factors affecting the corrosion resistance of aluminum alloys used in the aircraft body. For this reason, Aluminum 7075 alloy was preferred as the surface. There are two main approaches to applying smart coatings with self- healing properties used for anti-corrosion applications. The first method involves localized repair of the damaged coating by controlled release of polymerizable agents, while the second method requires electrochemical protection of the exposed metallic substrate using corrosion inhibitors stored in nanocontainers. In this thesis study, the second method mentioned above was applied. Within the scope of the study, aluminum alloy was used as the main material, Halloysite nanotubes were used as nano containers, and Benzotriazole (BTA) was used as an inhibitor. iv The layer-by-layer bonding (LBL) method was applied as an end-stopping system for nanotubes, and Poly(maleic anhydride-alt-acrylic acid) copolymer was synthesized to be used in the LBL method. In addition, the calcination process aims to enlarge the inner diameter of halloysite nanotubes and increase the loading capacity of corrosion inhibitors. After the calcination of the halloysite nanotubes, BTA loading was carried out on the calcined and uncalcined nanotubes, and then the BTA-loaded halloysite nanotubes were synthesized with Poly(maleic anhydride-alt-acrylic acid) copolymer. A study was carried out to improve the corrosion that occurs on aluminum alloy with the nanotubes formed as a result of synthesis. In addition, aluminum alloys were coated with nanotubes and then treated with acid to observe whether they would corrode. The morphology and properties of the nanocontainers were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The amount of benzotriazole (BTA) loaded in the halloysite lumen was determined by thermogravimetric analysis (TGA). Additionally, Surface area and pore size (BET) analysis was performed after loading. Dynamic Mechanical Analysis (DMA) was used to follow the dynamic mechanical properties of the nanocontainers. The control of the healing of the defective area exposed to corrosion was illuminated by scanning electron microscopy (SEM-EDX). Within the scope of the thesis, self-healing structures against corrosion made with the use of nano-containers can contribute both nationally and internationally, reduce financial losses especially in the defense industry and other industries, and compete in both our country and the world market by being non-toxic with the use of environmentally friendly polymers. It is considered as the original value of the thesis. Additionally, preventing inhibitor leakage with the layer-by-layer bonding technique increases the success of the system.tr_TR
dc.language.isoturtr_TR
dc.publisherEğitim Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectKendi kendine onarımtr_TR
dc.subjectHalloysittr_TR
dc.subjectLBL Metodtr_TR
dc.subjectBTAtr_TR
dc.subjectPoli (MA-ard-AA)tr_TR
dc.subject.lcshKimyatr_TR
dc.titleAkıllı Halloysit Nanodepoların Sentezi ve Korozyon Önleyici Kaplamalarda Kullanılmasıtr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetSunulan tez çalışmasının temel amacı korozyon önleyici kaplamalarda kullanılmak üzere Akıllı Halloysit Nanodepoların sentezlenmesi ve karakterize edilmesidir. Korozyonun doğrudan ve dolaylı olarak etkilediği sektörlere bakıldığında havacılık, enerji, kimya, gıda, petrol ve gaz, eczacılık, makine, inşaat mühendisliği gibi birçok alan sıralanabilir. Havacılık sektörü ise, günümüzde güvenlik ve hız faktörleri göz önüne alındığında en önde yer alan sektör konumundadır. Üretim ve bakım çalışmalarında alınan önlemlerle uçakların içinde bulundukları ağır koşullardan kaynaklanan korozyon hasarlarının önüne geçilmeye çalışılmıştır. Tasarım sürecinde malzeme seçimi ve son işlemler, uçak gövdesinde kullanılan alüminyum alaşımlarının korozyon direncine etki eden önemli faktörlerdendir. Bu sebeple yüzey olarak Alüminyum 7075 alaşımı tercih edilmiştir. Korozyon önleyici uygulamalar için kullanılan kendi kendini iyileştirme özelliklerine sahip akıllı kaplamaların uygulanması için iki ana yaklaşım vardır. İlk yöntem, polimerize edilebilir ajanların kontrollü salınımı ile hasarlı kaplamanın lokalize onarımını içerirken, ikinci yöntem, nano-konteynerlarda depolanan korozyon inhibitörlerini kullanarak maruz kalan metalik substratın elektrokimyasal korunmasını gerektirir. Bu tez çalışmasında ise yukarıda belirtilmiş olan ikinci yöntem uygulanmıştır. Çalışma kapsamında, ana malzeme olarak alüminyum alaşımı, nano-konteyner olarak Halloysit nanotüpler, inhibitör olarak Benzotriazol (BTA) kullanılmıştır. Nanotüplerin uç durdurucu sistem olarak katman katman birleştirme (LBL) metodu uygulanmış olup, LBL metodunda kullanılmak üzere Poli(maleik anhidrit-ard-akrilik asit) kopolimeri ii sentezlenmiştir. Ayrıca kalsinasyon işlemi ile halloysit nanotüplerin iç çapının büyütülmesi ve korozyon inhibitörlerinin yükleme kapasitesinin arttırılması hedeflenmiştir. Halloysit nanotüplerin kalsinasyonundan sonra kalsine edilmiş olan ve olmayan nanotüplere BTA yükleme işlemi gerçekleştirilmiş olup ardından BTA yüklü olan halloysit nanotüpler Poli (maleik anhidrit-ard-akrilik asit) kopolimeri ile sentezlenmiştir. Sentez sonucunda oluşan nanotüpler ile alüminyum alaşımı üzerinde meydana gelen korozyonun iyileştirilme çalışması yapılmıştır. Ayrıca alüminyum alaşımları nanotüpler ile kaplanmış ve daha sonra asit ile muamele edilerek korozyona uğrayıp uğramayacağı gözlenmiştir. Nanokapların morfolojisi ve özellikleri taramalı elektron mikroskobu (SEM) ve Fourier dönüşümü kızılötesi spektroskopisi (FTIR) ile karakterize edilmiştir. Halloysit lümeninde yüklü olan benzotriazol (BTA) miktarı termogravimetrik analiz (TGA) ile belirlendi. Ayrıca yükleme sonrasında Yüzey alanı ve gözenek boyutu (BET) analizi gerçekleştirildi. Nanokapların dinamik mekanik özelliklerini takip etmek için Dinamik Mekanik Analiz (DMA) kullanıldı. Korozyona maruz kalan kusurlu bölgenin iyileşmesinin kontrolü taramalı elektron mikroskobu (SEM-EDX) ile aydınlatılmıştır. Tez kapsamında, nano-konteyner kullanımı ile gerçekleştirilmiş olan korozyona karşı kendi kendini iyileştiren yapıların hem ulusal hem de uluslararası katkı yapması, özellikle savunma sanayi ve diğer endüstrilerde maddi kayıpların azaltılması, çevre dostu polimerlerin kullanılmasıyla birlikte toksisite içermemesi ile hem ülkemiz hem de dünya pazarında rekabet edebilmesi tezin özgün değeri olarak düşünülmektedir. Ayrıca katman katman birleştirme tekniği ile inhibitör sızıntısının engellenmesi sistemin başarısını arttırmaktadır.tr_TR
dc.contributor.departmentPolimer Bilimi ve Teknolojitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2024-10-15T07:20:44Z
dc.fundingYoktr_TR
dc.subtypeprojecttr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster