Basit öğe kaydını göster

dc.contributor.advisorBARSBAY
dc.contributor.authorNIKANFARD, Mehrdad
dc.date.accessioned2024-10-15T07:07:00Z
dc.date.issued2024-08-22
dc.date.submitted2024-07-23
dc.identifier.citation[1] M. Frieri, K. Kumar, A. Boutin, Antibiotic resistance, J Infect Public Health 10 (2017) 369–378. [2] S. Li, S. Dong, W. Xu, S. Tu, L. Yan, C. Zhao, J. Ding, X. Chen, Antibacterial hydrogels, Advanced Science 5 (2018) 1700527. [3] S. Hou, Z. Xia, J. Pan, N. Wang, H. Gao, J. Ren, X. Xia, Bacterial cellulose applied in wound dressing materials: Production and functional modification–A review, Macromol Biosci 24 (2024) 2300333. [4] M. Kuddushi, A.A. Shah, C. Ayranci, X. Zhang, Recent advances in novel materials and techniques for developing transparent wound dressings, J Mater Chem B (2023). [5] B. Sheokand, M. Vats, A. Kumar, C.M. Srivastava, I. Bahadur, S.R. Pathak, Natural polymers used in the dressing materials for wound healing: Past, present and future, Journal of Polymer Science 61 (2023) 1389–1414. [6] L.M. Arrieta Payares, L.D.C. Gutiérrez Púa, L.A. Di Mare Pareja, S.C. Paredes Méndez, V.N. Paredes Méndez, Microalgae applications to bone repairing processes: A review, ACS Biomater Sci Eng 9 (2023) 2991–3009. [7] A. Negi, A. Chauhan, R. Kashyap, R.K. Sharma, G.R. Chaudhary, Recent Advances and Perspectives on Polymer-Based Materials for Biomedical Applications, Advanced Materials for Biomedical Applications: Development and Processing (2023) 71–84. [8] M.U.A. Khan, M.A. Aslam, M.F. Bin Abdullah, A. Hasan, S.A. Shah, G.M. Stojanović, Recent perspective of polymeric biomaterial in tissue engineering–a review, Mater Today Chem 34 (2023) 101818. [9] F. Tariq, M. Zaman, M.A. Waqar, M.A. Saeed, R.M. Sarfraz, Design, optimization & characterization of niosomal & polymeric nanoparticles, International Journal of Polymeric Materials and Polymeric Biomaterials (2023) 1–14. [10] P. Ilayaperumal, P. Chelladurai, K. Vairan, P. Anilkumar, B. Balagurusamy, Polyphosphazenes—A promising candidate for Drug Delivery, Bioimaging, and tissue Engineering: a review, Macromol Mater Eng 308 (2023) 2200553. [11] N.H. Thang, T.B. Chien, D.X. Cuong, Polymer-based hydrogels applied in drug delivery: An overview, Gels 9 (2023) 523. [12] B. Kickhöfen, H. Wokalek, D. Scheel, H. Ruh, Chemical and physical properties of a hydrogel wound dressing, Biomaterials 7 (1986) 67–72. [13] Z. Fan, B. Liu, J. Wang, S. Zhang, Q. Lin, P. Gong, L. Ma, S. Yang, A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing, Adv Funct Mater 24 (2014) 3933–3943. [14] Z. Ajji, I. Othman, J.M. Rosiak, Production of hydrogel wound dressings using gamma radiation, Nucl Instrum Methods Phys Res B 229 (2005) 375–380. [15] M.S.B. Husain, A. Gupta, B.Y. Alashwal, S. Sharma, Synthesis of PVA/PVP based hydrogel for biomedical applications: a review, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 40 (2018) 2388–2393. [16] N.H. Thang, T.B. Chien, D.X. Cuong, Polymer-based hydrogels applied in drug delivery: An overview, Gels 9 (2023) 523. [17] J. Maitra, V.K. Shukla, Cross-linking in hydrogels-a review, Am. J. Polym. Sci 4 (2014) 25–31. [18] H. Omidian, K. Park, Introduction to hydrogels, Biomedical Applications of Hydrogels Handbook (2010) 1–16. [19] A.M. Mathur, S.K. Moorjani, A.B. Scranton, Methods for synthesis of hydrogel networks: A review, Journal of Macromolecular Science, Part C: Polymer Reviews 36 (1996) 405–430. [20] M. Şen, E.N. Avcı, Radiation synthesis of poly (N‐vinyl‐2‐pyrrolidone)–κ‐carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests, Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 74 (2005) 187–196. [21] H. Bodugöz, N. Pekel, O. Güven, Preparation of poly (vinyl alcohol) hydrogels with radiation grafted citric and succinic acid groups, Radiation Physics and Chemistry 55 (1999) 667–671. [22] L. Brannon-Peppas, R.S. Harland, Absorbent polymer technology, Elsevier, 2012. [23] Y. Ai, Z. Lin, W. Zhao, M. Cui, W. Qi, R. Huang, R. Su, Nanocellulose-based hydrogels for drug delivery, J Mater Chem B (2023). [24] E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J Adv Res 6 (2015) 105–121. [25] J. Zhao, P. Qiu, Y. Wang, Y. Wang, J. Zhou, B. Zhang, L. Zhang, D. Gou, Chitosan-based hydrogel wound dressing: From mechanism to applications, a review, Int J Biol Macromol (2023) 125250. [26] B. Jia, G. Li, E. Cao, J. Luo, X. Zhao, H. Huang, Recent progress of antibacterial hydrogels in wound dressings, Mater Today Bio 19 (2023) 100582. [27] B. Taşdelen, N. Kayaman-Apohan, O. Güven, B.M. Baysal, Preparation of poly (N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behavior, Int J Pharm 278 (2004) 343–351. [28] M. Şen, C. Uzun, O. Güven, Controlled release of terbinafine hydrochloride from pH sensitive poly (acrylamide/maleic acid) hydrogels, Int J Pharm 203 (2000) 149–157. [29] M. Şen, C. Uzun, O. Güven, Controlled release of terbinafine hydrochloride from pH sensitive poly (acrylamide/maleic acid) hydrogels, Int J Pharm 203 (2000) 149–157. [30] M. Şen, A. Yakar, Controlled release of antifungal drug terbinafine hydrochloride from poly (N-vinyl 2-pyrrolidone/itaconic acid) hydrogels, Int J Pharm 228 (2001) 33–41. [31] M.U.A. Khan, G.M. Stojanović, M.F. Bin Abdullah, A. Dolatshahi-Pirouz, H.E. Marei, N. Ashammakhi, A. Hasan, Fundamental properties of smart hydrogels for tissue engineering applications: A review, Int J Biol Macromol (2023) 127882. [32] K. Ishihara, X. Shi, K. Fukazawa, T. Yamaoka, G. Yao, J.Y. Wu, Biomimetic-engineered silicone hydrogel contact lens materials, ACS Appl Bio Mater 6 (2023) 3600–3616. [33] Y. Zhang, Q. Tang, J. Zhou, C. Zhao, J. Li, H. Wang, Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review, ACS Biomater Sci Eng 10 (2023) 191–218. [34] Z. Wang, H. Wei, Y. Huang, Y. Wei, J. Chen, Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing, Chem Soc Rev 52 (2023) 2992–3034. [35] S. Wang, Y. Wei, Y. Wang, Y. Cheng, Cyclodextrin regulated natural polysaccharide hydrogels for biomedical applications-a review, Carbohydr Polym 313 (2023) 120760. [36] L. Zhao, Y. Zhou, J. Zhang, H. Liang, X. Chen, H. Tan, Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications, Pharmaceutics 15 (2023) 2514. [37] J. Kushwaha, R. Singh, Cellulose hydrogel and its derivatives: A review of application in heavy metal adsorption, Inorg Chem Commun (2023) 110721. [38] M.E. Villanueva, A.M. del R. Diez, J.A. González, C.J. Pérez, M. Orrego, L. Piehl, S. Teves, G.J. Copello, Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles, ACS Appl Mater Interfaces 8 (2016) 16280–16288. [39] C.-S. Lee, H.S. Hwang, Starch-Based Hydrogels as a Drug Delivery System in Biomedical Applications, Gels 9 (2023) 951. [40] R.M. Jarrah, M.D.A. Potes, X. Vitija, S. Durrani, A.K. Ghaith, W. Mualem, C. Zamanian, A.R. Bhandarkar, M. Bydon, Alginate hydrogels: A potential tissue engineering intervention for intervertebral disc degeneration, Journal of Clinical Neuroscience 113 (2023) 32–37. [41] R. Pereira, A. Carvalho, D.C. Vaz, M.H. Gil, A. Mendes, P. Bártolo, Development of novel alginate based hydrogel films for wound healing applications, Int J Biol Macromol 52 (2013) 221–230. [42] A. Tangri, POLYACRYLAMIDE BASED HYDROGELS: SYNTHESIS, CHARACTERIZATION AND APPLICATIONS., International Journal of Pharmaceutical, Chemical & Biological Sciences 4 (2014). [43] S. Sun, Y. Cui, B. Yuan, M. Dou, G. Wang, H. Xu, J. Wang, W. Yin, D. Wu, C. Peng, Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration, Front Bioeng Biotechnol 11 (2023) 1117647. [44] M. Yang, Z. Wang, M. Li, Z. Yin, H.A. Butt, The synthesis, mechanisms, and additives for bio‐compatible polyvinyl alcohol hydrogels: A review on current advances, trends, and future outlook, Journal of Vinyl and Additive Technology 29 (2023) 939–959. [45] K. Zhang, Y. Liu, X. Shi, R. Zhang, Y. He, H. Zhang, W. Wang, Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review, Int J Biol Macromol (2023) 125192. [46] E.A. Subagio, G.I. Permana, A.H. Bajamal, M. Faris, N.S. Suroto, A. Rasyida, B. Utomo, Biomechanical properties of polyvinyl alcohol hydrogel as a nucleus pulposus replacement in intervertebral disc herniation: A systematic review, World Acad Sci J 5 (2023) 1–6. [47] M.G. Cascone, M. Laus, D. Ricci, R. Sbarbati Del Guerra, Evaluation of poly (vinyl alcohol) hydrogels as a component of hybrid artificial tissues, J Mater Sci Mater Med 6 (1995) 71–75. [48] A. YAMAUCHI, Application of PVA-Gel for Optical Bio-medical Materials, Journal of Synthetic Organic Chemistry, Japan 39 (1981) 238–242. [49] C.M. Hassan, N.A. Peppas, Cellular PVA hydrogels produced by freeze/thawing, J Appl Polym Sci 76 (2000) 2075–2079. [50] U. Gulyuz, O. Okay, Self-healing poly (acrylic acid) hydrogels with shape memory behavior of high mechanical strength, Macromolecules 47 (2014) 6889–6899. [51] S. Farqarazi, M. Khorasani, The effects of synthetic and physical factors on the properties of poly (acrylic acid)-based hydrogels synthesized by precipitation polymerization technique: a review, Reviews in Chemical Engineering (2024). [52] J. Andrade del Olmo, J.M. Alonso, V. Sáez-Martínez, S. Benito-Cid, I. Moreno-Benítez, M. Bengoa-Larrauri, R. Pérez-González, J.L. Vilas-Vilela, L. Pérez-Álvarez, Self-healing, antibacterial and anti-inflammatory chitosan-PEG hydrogels for ulcerated skin wound healing and drug delivery, Biomaterials Advances 139 (2022) 212992. [53] E.-E. Tudoroiu, C.-E. Dinu-Pîrvu, M.G. Albu Kaya, L. Popa, V. Anuța, R.M. Prisada, M.V. Ghica, An overview of cellulose derivatives-based dressings for wound-healing management, Pharmaceuticals 14 (2021) 1215. [54] T. Iizawa, H. Taketa, M. Maruta, T. Ishido, T. Gotoh, S. Sakohara, Synthesis of porous poly (N‐isopropylacrylamide) gel beads by sedimentation polymerization and their morphology, J Appl Polym Sci 104 (2007) 842–850. [55] L. Yang, J.S. Chu, J.A. Fix, Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation, Int J Pharm 235 (2002) 1–15. [56] I. Popescu, D.M. Suflet, I.M. Pelin, G.C. Chitanu, Biomedical applications of maleic anhydride copolymers, Rev. Roum. Chim 56 (2011) 173–188. [57] L.R. Feksa, E.A. Troian, C.D. Muller, F. Viegas, A.B. Machado, V.C. Rech, Hydrogels for biomedical applications, in: Nanostructures for the Engineering of Cells, Tissues and Organs, Elsevier, 2018: pp. 403–438. [58] Z. Maolin, L. Jun, Y. Min, H. Hongfei, The swelling behavior of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers, Radiation Physics and Chemistry 58 (2000) 397–400. [59] S.Y. Kim, H.S. Shin, Y.M. Lee, C.N. Jeong, Properties of electroresponsive poly (vinyl alcohol)/poly (acrylic acid) IPN hydrogels under an electric stimulus, J Appl Polym Sci 73 (1999) 1675–1683. [60] K. De Yao, T. Peng, H.B. Feng, Y.Y. He, Swelling kinetics and release characteristic of crosslinked chitosan: polyether polymer network (semi‐IPN) hydrogels, J Polym Sci A Polym Chem 32 (1994) 1213–1223. [61] M. Wang, J. Qiang, Y.U. Fang, D. Hu, Y. Cui, X. Fu, Preparation and properties of chitosan‐poly (N‐isopropylacrylamide) semi‐IPN hydrogels, J Polym Sci A Polym Chem 38 (2000) 474–481. [62] L.H. Sperling, Interpenetrating polymer networks and related materials, Springer Science & Business Media, 2012. [63] L.H. Sperling, Interpenetrating polymer networks and related materials, Springer Science & Business Media, 2012. [64] S.C. Kim, L.H. Sperling, IPNs around the world: science and engineering, (No Title) (1997). [65] E.A. Kamoun, E.-R.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, J Adv Res 8 (2017) 217–233. [66] S. Safapour, M. Mazhar, M. Nikanfard, F. Liaghat, Recent advancements on the functionalized cyclodextrin-based adsorbents for dye removal from aqueous solutions, International Journal of Environmental Science and Technology 19 (2022) 5753–5790. [67] S.-H. Hyon, W.-I. Cha, Y. Ikada, M. Kita, Y. Ogura, Y. Honda, Poly (vinyl alcohol) hydrogels as soft contact lens material, J Biomater Sci Polym Ed 5 (1994) 397–406. [68] K.R. Kamath, K. Park, Biodegradable hydrogels in drug delivery, Adv Drug Deliv Rev 11 (1993) 59–84. [69] J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery, Nat Rev Mater 1 (2016) 1–17. [70] X. Qing, G. He, Z. Liu, Y. Yin, W. Cai, L. Fan, P. Fardim, Preparation and properties of polyvinyl alcohol/N–succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing, Carbohydr Polym 261 (2021) 117875. [71] W. Xu, S. Dong, Y. Han, S. Li, Y. Liu, Hydrogels as antibacterial biomaterials, Curr Pharm Des 24 (2018) 843–854. [72] G. Song, L. Zhang, C. He, D.-C. Fang, P.G. Whitten, H. Wang, Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding, Macromolecules 46 (2013) 7423–7435. [73] L. V Adamova, A.P. Safronov, Thermodynamics of interaction between water and lightly crosslinked hydrogels of acrylic and metacrylic acids, Russian Journal of Physical Chemistry A 94 (2020) 2510–2515. [74] R. Barbucci, A. Magnani, M. Consumi, Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density, Macromolecules 33 (2000) 7475–7480. [75] S. Nagahara, T. Matsuda, Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers, Polymer Gels and Networks 4 (1996) 111–127. [76] G.O. Kim, N. Kim, D.Y. Kim, J.S. Kwon, B.-H. Min, An electrostatically crosslinked chitosan hydrogel as a drug carrier, Molecules 17 (2012) 13704–13711. [77] T. Bai, P. Zhang, Y. Han, Y. Liu, W. Liu, X. Zhao, W. Lu, Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole–dipole interaction, Soft Matter 7 (2011) 2825–2831. [78] A. Dodero, L. Pianella, S. Vicini, M. Alloisio, M. Ottonelli, M. Castellano, Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree, Eur Polym J 118 (2019) 586–594. [79] M. Pieróg, M. Gierszewska-Drużyńska, J. Ostrowska-Czubenko, Effect of ionic crosslinking agents on swelling behavior of chitosan hydrogel membranes, Progress on Chemistry and Application of Chitin and Its Derivatives. Polish Chitin Society, Łódź 75 (2009) 3. [80] F. Zhu, X.Y. Lin, Z.L. Wu, L. Cheng, J. Yin, Y. Song, J. Qian, Q. Zheng, Processing tough supramolecular hydrogels with tunable strength of polyion complex, Polymer (Guildf) 95 (2016) 9–17. [81] N.A. Peppas, E.W. Merrill, Poly (vinyl alcohol) hydrogels: Reinforcement of radiation‐crosslinked networks by crystallization, Journal of Polymer Science: Polymer Chemistry Edition 14 (1976) 441–457. [82] H. Li, N. Kong, B. Laver, J. Liu, Hydrogels constructed from engineered proteins, Small 12 (2016) 973–987. [83] J. Cappello, G. Textor, B. Bauerle, Bioresorption of implanted protein polymer films controlled by adjustment of their silk/elastin block lengths, Industrial Biotechnological Polymers; Technomic Publishing Company: Lancaster, UK (1995) 249–256. [84] T. Miyata, N. Asami, T. Uragami, A reversibly antigen-responsive hydrogel, Nature 399 (1999) 766–769. [85] J. Maitra, V.K. Shukla, Cross-linking in hydrogels-a review, Am. J. Polym. Sci 4 (2014) 25–31. [86] E. Ruckenstein, L. Liang, Poly (acrylic acid)–poly (vinyl alcohol) semi‐and interpenetrating polymer network pervaporation membranes, J Appl Polym Sci 62 (1996) 973–987. [87] A. Barnes, P.H. Corkhill, B.J. Tighe, Synthetic hydrogels: 3. Hydroxyalkyl acrylate and methacrylate copolymers: surface and mechanical properties, Polymer (Guildf) 29 (1988) 2191–2202. [88] Y. Peng, H. Yu, H. Chen, Z. Huang, H. Li, Cross-linking and de-cross-linking of triarylimidazole-based polymer, Polymer (Guildf) 99 (2016) 529–535. [89] S.D. Sütekin, O. Güven, N. Şahiner, Nanogel Synthesis by Irradiation of Aqueous Polymer Solutions, Emerging Technologies for Nanoparticle Manufacturing (2021) 167–202. [90] N. Pekel, O. Güven, Synthesis and characterization of poly (N‐vinyl imidazole) hydrogels crosslinked by gamma irradiation, Polym Int 51 (2002) 1404–1410. [91] D. Şolpan, O. Güven, Adsorption of Uranyl Ions into Poly (Acrylamide‐co‐Acrylic Acid) Hydrogels Prepared by Gamma Irradiation, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 42 (2005) 485–494. [92] J. Maitra, V.K. Shukla, Cross-linking in hydrogels-a review, Am. J. Polym. Sci 4 (2014) 25–31. [93] M. Abu Ghalia, Y. Dahman, Radiation crosslinking polymerization of poly (vinyl alcohol) and poly (ethylene glycol) with controlled drug release, Journal of Polymer Research 22 (2015) 1–9. [94] C. Xu, Z. Zheng, W. Wu, L. Fu, B. Lin, Design of healable epoxy composite based on β-hydroxyl esters crosslinked networks by using carboxylated cellulose nanocrystals as crosslinker, Compos Sci Technol 181 (2019) 107677. [95] W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv Drug Deliv Rev 64 (2012) 223–236. [96] J.J. Sperinde, L.G. Griffith, Synthesis and characterization of enzymatically-cross-linked poly (ethylene glycol) hydrogels, Macromolecules 30 (1997) 5255–5264. [97] M. Bustamante-Torres, V.H. Pino-Ramos, D. Romero-Fierro, S.P. Hidalgo-Bonilla, H. Magaña, E. Bucio, Synthesis and antimicrobial properties of highly cross-linked pH-sensitive hydrogels through gamma radiation, Polymers (Basel) 13 (2021) 2223. [98] J.M. Rosiak, I. Janik, S. Kadlubowski, M. Kozicki, P. Kujawa, P. Stasica, P. Ulanski, Radiation formation of hydrogels for biomedical application, Radiation Synthesis and Modification of Polymers for Biomedical Applications 5 (2002). [99] L. Bonetti, L. De Nardo, S. Farè, Crosslinking strategies in modulating methylcellulose hydrogel properties, Soft Matter 19 (2023) 7869–7884. [100] M.A. Raza, J.-O. Jeong, S.H. Park, State-of-the-art irradiation technology for polymeric hydrogel fabrication and application in drug release system, Front Mater 8 (2021) 769436. [101] D.G. Miranda, S.M. Malmonge, D.M. Campos, N.G. Attik, B. Grosgogeat, K. Gritsch, A chitosan‐hyaluronic acid hydrogel scaffold for periodontal tissue engineering, J Biomed Mater Res B Appl Biomater 104 (2016) 1691–1702. [102] S. Wu, C. Xu, Y. Zhao, W. Shi, H. Li, J. Cai, F. Ding, P. Qu, Recent advances in chitosan-based hydrogels for flexible wearable sensors, Chemosensors 11 (2023) 39. [103] S. Francis, D. Mitra, B.R. Dhanawade, L. Varshney, S. Sabharwal, Gamma radiation synthesis of rapid swelling superporous polyacrylamide hydrogels, Radiation Physics and Chemistry 78 (2009) 951–953. [104] E.A. Kamoun, X. Chen, M.S.M. Eldin, E.-R.S. Kenawy, Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers, Arabian Journal of Chemistry 8 (2015) 1–14. [105] B. Jia, G. Li, E. Cao, J. Luo, X. Zhao, H. Huang, Recent progress of antibacterial hydrogels in wound dressings, Mater Today Bio 19 (2023) 100582. [106] M. Monerris, M.F. Broglia, E.I. Yslas, C.A. Barbero, C.R. Rivarola, Highly effective antimicrobial nanocomposites based on hydrogel matrix and silver nanoparticles: Long-lasting bactericidal and bacteriostatic effects, Soft Matter 15 (2019) 8059–8066. [107] G.H. Matar, M. Andac, Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels, Polymer Bulletin 78 (2021) 6095–6113. [108] K.A. Juby, C. Dwivedi, M. Kumar, S. Kota, H.S. Misra, P.N. Bajaj, Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study, Carbohydr Polym 89 (2012) 906–913. [109] T. Jayaramudu, G.M. Raghavendra, K. Varaprasad, R. Sadiku, K.M. Raju, Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria, Carbohydr Polym 92 (2013) 2193–2200. [110] M. Ribeiro, M.P. Ferraz, F.J. Monteiro, M.H. Fernandes, M.M. Beppu, D. Mantione, H. Sardon, Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration, Nanomedicine 13 (2017) 231–239. [111] G.M. Raghavendra, T. Jayaramudu, K. Varaprasad, G.S.M. Reddy, K.M. Raju, Antibacterial nanocomposite hydrogels for superior biomedical applications: a Facile eco-friendly approach, RSC Adv 5 (2015) 14351–14358. [112] T. Jayaramudu, K. Varaprasad, K.K. Reddy, R.D. Pyarasani, A. Akbari-Fakhrabadi, J. Amalraj, Chitosan-pluronic based Cu nanocomposite hydrogels for prototype antimicrobial applications, Int J Biol Macromol 143 (2020) 825–832. [113] F. Wahid, C. Zhong, H.-S. Wang, X.-H. Hu, L.-Q. Chu, Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles, Polymers (Basel) 9 (2017) 636. [114] S.K. Bajpai, M. Jadaun, S. Tiwari, Synthesis, characterization and antimicrobial applications of zinc oxide nanoparticles loaded gum acacia/poly (SA) hydrogels, Carbohydr Polym 153 (2016) 60–65. [115] C.M. Cleetus, F. Alvarez Primo, G. Fregoso, N. Lalitha Raveendran, J.C. Noveron, C.T. Spencer, C. V Ramana, B. Joddar, Alginate hydrogels with embedded ZnO nanoparticles for wound healing therapy, Int J Nanomedicine (2020) 5097–5111. [116] A. Khalil, N. Ali, A.M. Asiri, T. Kamal, S.B. Khan, J. Ali, Synthesis and catalytic evaluation of silver@ nickel oxide and alginate biopolymer nanocomposite hydrogel beads, Cellulose 28 (2021) 11299–11313. [117] H.F. Etefa, D.J. Nemera, F.B. Dejene, Green synthesis of nickel oxide NPs incorporating carbon dots for antimicrobial activities, ACS Omega 8 (2023) 38418–38425. [118] Y. Tang, H. Xu, X. Wang, S. Dong, L. Guo, S. Zhang, X. Yang, C. Liu, X. Jiang, M. Kan, Advances in preparation and application of antibacterial hydrogels, J Nanobiotechnology 21 (2023) 300. [119] L. Deng, Y. Deng, K. Xie, AgNPs-decorated 3D printed PEEK implant for infection control and bone repair, Colloids Surf B Biointerfaces 160 (2017) 483–492. [120] Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, Thermosensitive core–shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks, Angewandte Chemie International Edition 45 (2006) 813–816. [121] J. Stojkovska, D. Kostić, Ž. Jovanović, M. Vukašinović-Sekulić, V. Mišković-Stanković, B. Obradović, A comprehensive approach to in vitro functional evaluation of Ag/alginate nanocomposite hydrogels, Carbohydr Polym 111 (2014) 305–314. [122] K. Madhusudana Rao, K.S. V Krishna Rao, G. Ramanjaneyulu, K. Chowdoji Rao, M.C.S. Subha, C. Ha, Biodegradable sodium alginate‐based semi‐interpenetrating polymer network hydrogels for antibacterial application, J Biomed Mater Res A 102 (2014) 3196–3206. [123] K. Neibert, V. Gopishetty, A. Grigoryev, I. Tokarev, N. Al‐Hajaj, J. Vorstenbosch, A. Philip, S. Minko, D. Maysinger, Wound‐healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles, Adv Healthc Mater 1 (2012) 621–630. [124] P.R. Reddy, K. Varaprasad, R. Sadiku, K. Ramam, G.V.S. Reddy, K.M. Raju, N.S. Reddy, Development of gelatin based inorganic nanocomposite hydrogels for inactivation of bacteria, J Inorg Organomet Polym Mater 23 (2013) 1054–1060. [125] C. Ferrag, S. Li, K. Jeon, N.M. Andoy, R.M.A. Sullan, S. Mikhaylichenko, K. Kerman, Polyacrylamide hydrogels doped with different shapes of silver nanoparticles: Antibacterial and mechanical properties, Colloids Surf B Biointerfaces 197 (2021) 111397. [126] D. Yiamsawas, K. Boonpavanitchakul, R. Sangsirimongkolying, W. Kangwansupamonkon, Polyacrylic acid based hydrogel-silver nanoparticles for antibacterial applications, in: 2008 International Conference on Nanoscience and Nanotechnology, IEEE, 2008: pp. 90–93. [127] Ž. Jovanović, A. Krklješ, S. Tomić, V. Mišković-Stanković, S. Popović, M. Dragašević, Z. Kačarević-Popović, Properties of Ag/PVP Hydrogel nanocomposite synthesized in situ by gamma irradiation, Trends in Nanophysics: Theory, Experiment and Technology (2010) 315–328. [128] M.T.S. Alcântara, N. Lincopan, P.M. dos Santos, P.A. Ramirez, A.J.C. Brant, H.G. Riella, A.B. Lugão, Simultaneous hydrogel crosslinking and silver nanoparticle formation by using ionizing radiation to obtain antimicrobial hydrogels, Radiation Physics and Chemistry 169 (2020) 108777. [129] N. Nikolić, J. Spasojević, A. Radosavljević, M. Milošević, T. Barudžija, L. Rakočević, Z. Kačarević-Popović, Influence of poly (vinyl alcohol)/poly (N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation, Radiation Physics and Chemistry 202 (2023) 110564. [130] Y.M. Mohan, K. Vimala, V. Thomas, K. Varaprasad, B. Sreedhar, S.K. Bajpai, K.M. Raju, Controlling of silver nanoparticles structure by hydrogel networks, J Colloid Interface Sci 342 (2010) 73–82. [131] P.R. Reddy, K. Varaprasad, R. Sadiku, K. Ramam, G.V.S. Reddy, K.M. Raju, N.S. Reddy, Development of gelatin based inorganic nanocomposite hydrogels for inactivation of bacteria, J Inorg Organomet Polym Mater 23 (2013) 1054–1060. [132] P.R. Reddy, K. Varaprasad, R. Sadiku, K. Ramam, G.V.S. Reddy, K.M. Raju, N.S. Reddy, Development of gelatin based inorganic nanocomposite hydrogels for inactivation of bacteria, J Inorg Organomet Polym Mater 23 (2013) 1054–1060. [133] M. Eid, E. Araby, Bactericidal effect of poly (acrylamide/itaconic acid)–silver nanoparticles synthesized by gamma irradiation against Pseudomonas aeruginosa, Appl Biochem Biotechnol 171 (2013) 469–487. [134] E.S. Abdel-Halim, S.S. Al-Deyab, Antimicrobial activity of silver/starch/polyacrylamide nanocomposite, Int J Biol Macromol 68 (2014) 33–38. [135] B. Boonkaew, P. Suwanpreuksa, L. Cuttle, P.M. Barber, P. Supaphol, Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity, J Appl Polym Sci 131 (2014). [136] W.-F. Lee, K.-T. Tsao, Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization, J Mater Sci 45 (2010) 89–97. [137] M. Jaiswal, V. Koul, A.K. Dinda, In vitro and in vivo investigational studies of a nanocomposite‐hydrogel‐based dressing with a silver‐coated chitosan wafer for full‐thickness skin wounds, J Appl Polym Sci 133 (2016). [138] S. Grade, J. Eberhard, A. Neumeister, P. Wagener, A. Winkel, M. Stiesch, S. Barcikowski, Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles, RSC Adv 2 (2012) 7190–7196. [139] L. Xu, X. Li, T. Takemura, N. Hanagata, G. Wu, L.L. Chou, Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel, J Nanobiotechnology 10 (2012) 1–11. [140] C. Yang, S. Jung, H. Yi, A biofabrication approach for controlled synthesis of silver nanoparticles with high catalytic and antibacterial activities, Biochem Eng J 89 (2014) 10–20. [141] A. Taglietti, Y.A. Diaz Fernandez, E. Amato, L. Cucca, G. Dacarro, P. Grisoli, V. Necchi, P. Pallavicini, L. Pasotti, M. Patrini, Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria, Langmuir 28 (2012) 8140–8148. [142] H. Yu, X. Xu, X. Chen, T. Lu, P. Zhang, X. Jing, Preparation and antibacterial effects of PVA‐PVP hydrogels containing silver nanoparticles, J Appl Polym Sci 103 (2007) 125–133. [143] H. Sevim Akan, G. Şahal, T.D. Karaca, Ö.A. Gürpınar, M. Maraş, A. Doğan, Evaluation of glycyl-arginine and lysyl-aspartic acid dipeptides for their antimicrobial, antibiofilm, and anticancer potentials, Arch Microbiol 205 (2023) 365. [144] S. Hamidi, F. Monajjemzadeh, M. Siahi‐Shadbad, S.A. Khatibi, A. Farjami, Antibacterial activity of natural polymer gels and potential applications without synthetic antibiotics, Polym Eng Sci 63 (2023) 5–21. [145] X. Lin, Q. Ma, J. Su, C. Wang, R.K. Kankala, M. Zeng, H. Lin, S.-F. Zhou, Dual-responsive alginate hydrogels for controlled release of therapeutics, Molecules 24 (2019) 2089. [146] X. Lin, Q. Ma, J. Su, C. Wang, R.K. Kankala, M. Zeng, H. Lin, S.-F. Zhou, Dual-responsive alginate hydrogels for controlled release of therapeutics, Molecules 24 (2019) 2089. [147] H. Peng, Y. Lv, G. Wei, J. Zhou, X. Gao, K. Sun, G. Ma, Z. Lei, A flexible and self-healing hydrogel electrolyte for smart supercapacitor, J Power Sources 431 (2019) 210–219. [148] H. Trieu, S. Qutubuddin, Poly (vinyl alcohol) hydrogels: 2. Effects of processing parameters on structure and properties, Polymer (Guildf) 36 (1995) 2531–2539. [149] U. Fumio, Y. Hiroshi, N. Kumiko, N. Sachihiko, S. Kenji, M. Yasunori, Swelling and mechanical properties of poly (vinyl alcohol) hydrogels, Int J Pharm 58 (1990) 135–142. [150] D. Şolpan, O. Güven, Adsorption of Uranyl Ions into Poly (Acrylamide‐co‐Acrylic Acid) Hydrogels Prepared by Gamma Irradiation, Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 42 (2005) 485–494. [151] S. Francis, D. Mitra, B.R. Dhanawade, L. Varshney, S. Sabharwal, Gamma radiation synthesis of rapid swelling superporous polyacrylamide hydrogels, Radiation Physics and Chemistry 78 (2009) 951–953. [152] K.Y. Lee, D.J. Mooney, Hydrogels for tissue engineering, Chem Rev 101 (2001) 1869–1880. [153] Y. Suzuki, M. Tanihara, Y. Nishimura, K. Suzuki, Y. Kakimaru, Y. Shimizu, A new drug delivery system with controlled release of antibiotic only in the presence of infection, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials 42 (1998) 112–116. [154] G. Rivera-Hernández, M. Antunes-Ricardo, P. Martínez-Morales, M.L. Sanchez, Polyvinyl alcohol based-drug delivery systems for cancer treatment, Int J Pharm 600 (2021) 120478. [155] S. Jiang, S. Liu, W. Feng, PVA hydrogel properties for biomedical application, J Mech Behav Biomed Mater 4 (2011) 1228–1233. [156] H. Adelnia, R. Ensandoost, S.S. Moonshi, J.N. Gavgani, E.I. Vasafi, H.T. Ta, Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future, Eur Polym J 164 (2022) 110974. [157] M. Kobayashi, H.S. Hyu, Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants, Materials 3 (2010) 2753–2771. [158] A. Kumar, S.S. Han, PVA-based hydrogels for tissue engineering: A review, International Journal of Polymeric Materials and Polymeric Biomaterials 66 (2017) 159–182. [159] M. Wang, J. Bai, K. Shao, W. Tang, X. Zhao, D. Lin, S. Huang, C. Chen, Z. Ding, J. Ye, Poly (vinyl alcohol) hydrogels: The old and new functional materials, Int J Polym Sci 2021 (2021) 1–16. [160] L. Kvítek, A. Panáček, J. Soukupová, M. Kolář, R. Večeřová, R. Prucek, M. Holecová, R. Zbořil, Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs), The Journal of Physical Chemistry C 112 (2008) 5825–5834. [161] K.M. Koczkur, S. Mourdikoudis, L. Polavarapu, S.E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalton Transactions 44 (2015) 17883–17905. [162] M. Barsbay, T.Ç. Özgür, S.D. Sütekin, O. Güven, Effect of brush length of stabilizing grafted matrix on size and catalytic activity of metal nanoparticles, Eur Polym J 134 (2020) 109811. [163] W. Zhao, J. He, Y. Zhang, Research progress in the living/controlled polymerization of (meth) acrylate monomers by Lewis pair, Sci China Chem 66 (2023) 2256–2266. [164] N.H. Thang, T.B. Chien, D.X. Cuong, Polymer-based hydrogels applied in drug delivery: An overview, Gels 9 (2023) 523. [165] M. Dong, D. Jiao, Q. Zheng, Z.L. Wu, Recent progress in fabrications and applications of functional hydrogel films, Journal of Polymer Science 61 (2023) 1026–1039. [166] Z. Wu, T. Zhang, X. Shi, N. Corrigan, G. Ng, C. Boyer, Photo‐RAFT Polymerization for Hydrogel Synthesis through Barriers and Development of Light‐Regulated Healable Hydrogels under NIR Irradiation, Angewandte Chemie International Edition 62 (2023) e202302451. [167] A.D.M. Rigby, A.R. Alipio, V. Chiaradia, M.C. Arno, Self-Healing Hydrogel Scaffolds through PET-RAFT Polymerization in Cellular Environment, Biomacromolecules 24 (2023) 3370–3379. [168] C. Xian, Q. Yuan, Z. Bao, G. Liu, J. Wu, Progress on intelligent hydrogels based on RAFT polymerization: Design strategy, fabrication and the applications for controlled drug delivery, Chinese Chemical Letters 31 (2020) 19–27. [169] A.R.S.S. Kumar, A. Padmakumar, U. Kalita, S. Samanta, A. Baral, N.K. Singha, M. Ashokkumar, G.G. Qiao, Ultrasonics in polymer science: applications and challenges, Prog Mater Sci 136 (2023) 101113. [170] D.J. Siegwart, J.K. Oh, K. Matyjaszewski, ATRP in the design of functional materials for biomedical applications, Prog Polym Sci 37 (2012) 18–37. [171] T. Peng, Q. Shi, M. Chen, W. Yu, T. Yang, Antibacterial-based hydrogel coatings and their application in the biomedical field—a review, J Funct Biomater 14 (2023) 243. [172] C. Hachimi Alaoui, G. Réthoré, P. Weiss, A. Fatimi, Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications, Int J Mol Sci 24 (2023) 13493. [173] C.N. Britten, Y. Leng, F. Tarannum, K.B. Walters, Synthesis of phosphate hydrogels with excellent swelling behavior prepared by ascorbic acid-mediated ARGET ATRP, Mater Today Chem 37 (2024) 101998. [174] V. Coessens, T. Pintauer, K. Matyjaszewski, Functional polymers by atom transfer radical polymerization, Prog Polym Sci 26 (2001) 337–377. [175] P. Krys, K. Matyjaszewski, Kinetics of atom transfer radical polymerization, Eur Polym J 89 (2017) 482–523. [176] W. Jakubowski, K. Min, K. Matyjaszewski, Activators regenerated by electron transfer for atom transfer radical polymerization of styrene, Macromolecules 39 (2006) 39–45. [177] M. Fantin, A.A. Isse, A. Venzo, A. Gennaro, K. Matyjaszewski, Atom transfer radical polymerization of methacrylic acid: a won challenge, J Am Chem Soc 138 (2016) 7216–7219. [178] M. Teodorescu, K. Matyjaszewski*, Controlled polymerization of (meth) acrylamides by atom transfer radical polymerization, Macromol Rapid Commun 21 (2000) 190–194. [179] M. Al-Harthi, A. Sardashti, J.B.P. Soares, L.C. Simon, Atom transfer radical polymerization (ATRP) of styrene and acrylonitrile with monofunctional and bifunctional initiators, Polymer (Guildf) 48 (2007) 1954–1961. [180] K. Matyjaszewski, Current status and outlook for ATRP, Eur Polym J (2024) 113001. [181] K. Matyjaszewski, J. Xia, Atom transfer radical polymerization, Chem Rev 101 (2001) 2921–2990. [182] T.E. Patten, K. Matyjaszewski, Atom transfer radical polymerization and the synthesis of polymeric materials, Advanced Materials 10 (1998) 901–915. [183] V.R. Sinha, A.K. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, S. Dhawan, Chitosan microspheres as a potential carrier for drugs, Int J Pharm 274 (2004) 1–33. [184] D. Jain, E. Carvalho, A.K. Banthia, R. Banerjee, Development of polyvinyl alcohol–gelatin membranes for antibiotic delivery in the eye, Drug Dev Ind Pharm 37 (2011) 167–177. [185] M. Le Gars, J. Bras, H. Salmi-Mani, M. Ji, D. Dragoe, H. Faraj, S. Domenek, N. Belgacem, P. Roger, Polymerization of glycidyl methacrylate from the surface of cellulose nanocrystals for the elaboration of PLA-based nanocomposites, Carbohydr Polym 234 (2020) 115899. [186] M.S. Mohammadnia, S. Hemmati, M. Fasihi-Ramandi, M. Bahari, Synthesis of novel surface-modified nanohydroxyapatite containing chitosan-functionalized graphene oxide decorated with glycidyl methacrylate (GO–CS–GMA) via ATRP for biomedical application, Polymer Bulletin (2022) 1–26. [187] R. Bryaskova, D. Pencheva, S. Nikolov, T. Kantardjiev, Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP), J Chem Biol 4 (2011) 185–191. [188] M. Ghaffarlou, S.D. Sütekin, E. Karacaoğlu, S.K. Turan, Ö.G. İnci, O. Güven, M. Barsbay, Folic acid-modified biocompatible pullulan/poly (acrylic acid) nanogels for targeted delivery to MCF-7 cancer cells, European Journal of Pharmaceutics and Biopharmaceutics 184 (2023) 189–201. [189] G. Sahal, I.S. Bilkay, Distribution of clinical isolates of Candida spp. and antifungal susceptibility of high biofilm-forming Candida isolates, Rev Soc Bras Med Trop 51 (2018) 644–650. [190] G. Sahal, I.S. Bilkay, Multidrug resistance by biofilm-forming clinical strains of, Asian Biomedicine 9 (2015) 535–541. [191] G. Sahal, I.S. Bilkay, Multi drug resistance in strong biofilm forming clinical isolates of Staphylococcus epidermidis, Brazilian Journal of Microbiology 45 (2014) 539–544. [192] J. Hudzicki, Kirby-Bauer disk diffusion susceptibility test protocol, American Society for Microbiology 15 (2009) 1–23. [193] H.S. Mansur, R.L. Oréfice, A.A.P. Mansur, Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy, Polymer (Guildf) 45 (2004) 7193–7202. [194] H.S. Mansur, C.M. Sadahira, A.N. Souza, A.A.P. Mansur, FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde, Materials Science and Engineering: C 28 (2008) 539–548. [195] N. Zhao, H. Al Bitar, Y. Zhu, Y. Xu, Z. Shi, Synthesis of polymer grafted starches and their flocculation properties in clay suspension, Minerals 10 (2020) 1054. [196] T. Franca, D. Goncalves, C. Cena, ATR-FTIR spectroscopy combined with machine learning for classification of PVA/PVP blends in low concentration, Vib Spectrosc 120 (2022) 103378. [197] N. Azeez Betti, Thermogravimetric analysis on PVA/PVP blend under air atmosphere, Engineering and Technology Journal 34 (2016) 2433–2442. [198] Y.H. Kim, D.K. Lee, Y.S. Kang, Synthesis and characterization of Ag and Ag–SiO2 nanoparticles, Colloids Surf A Physicochem Eng Asp 257 (2005) 273–276. [199] L. Sun, Z. Zhang, H. Dang, A novel method for preparation of silver nanoparticles, Mater Lett 57 (2003) 3874–3879. [200] A.L. Tolstov, E. V Lebedev, Features of the stabilization of silver nanoparticles by carbonyl-containing polymers, Theoretical and Experimental Chemistry 48 (2012) 213–226. [201] R. Xuan, L. Arisi, Q. Wang, S.R. Yates, K.C. Biswas, Hydrolysis and photolysis of oxytetracycline in aqueous solution, Journal of Environmental Science and Health Part B 45 (2009) 73–81. [202] A.M. Doi, M.K. Stoskopf, The kinetics of oxytetracycline degradation in deionized water under varying temperature, pH, light, substrate, and organic matter, J Aquat Anim Health 12 (2000) 246–253.tr_TR
dc.identifier.urihttps://hdl.handle.net/11655/35965
dc.description.abstractNew and effective antibacterial hydrogels with high drug carrying capacity occupy a remarkable position among the studies conducted in the biomedical field. In this thesis, the synthesis and characterization of a novel hydrogel structure decorated with antimicrobial silver nanoparticles (Ag NPs) were investigated. In this context, poly (vinyl alcohol) (PVA) hydrogels were synthesized by a radiation-initiated crosslinking method, and then the surfaces of the hydrogels were grafted with poly (vinyl pyrrolidone) (PVP) using Atom Transfer Radical Polymerization (ATRP). PVA hydrogels grafted with PVP (PVP@PVA) were modified with Ag NPs via thermal reduction of absorbed Ag+ ions without using any reducing agent (AgNP@PVP@PVA). The mobility of the polymer chains in the PVA hydrogel structure is restricted due to its crosslinked nature. In contrast, grafted PVP chains exhibit higher mobility and, due to their characteristic stabilizing properties, show a high potential to stabilize Ag nanoparticles added later. The PVP layer grafted onto the surface serves as a matrix for the stability of Ag NPs within the hydrogel structure. The swelling behaviors and pore structures of the synthesized hydrogels were determined by swelling tests and SEM analysis. It was observed that the gels behaved as super absorbent hydrogels by absorbing up to approximately 30 times their initial weight in water. The OH groups of PVA gels were modified with an ATRP initiator, and the amount of brominated OH groups (modification degree) was calculated as approximately 50% using FTIR spectroscopy. Three different methods (calculation of peak areas with FTIR, mass increase, and Thermogravimetric analyzes) were used to determine the degree of modification of PVA gels with PVP. The results obtained from all three methods were close to each other, showing that an approximately 20% PVP modification degree was achieved. The prepared PVP@PVA hydrogel was characterized by SEM analysis after the thermal reduction of silver nanoparticles, and it was found that Ag nanoparticles with an average size of 80 nm were homogeneously distributed along the hydrogel surface. XRD spectroscopy was also used to determine the size distribution of silver nanoparticles. In the XRD pattern, three distinct diffraction peaks corresponding to the (111), (200), and (220) crystal planes of metallic Ag NPs were observed at 2θ = 38.0°, 44.1°, and 65.1°. The antimicrobial efficacy of hydrogels containing Ag NPs was investigated against cell lines of Proteus mirabilis (Gram-negative bacterium), Staphylococcus epidermidis (Gram-positive bacterium), and Candida tropicalis (yeast). The PVP@PVA hydrogels synthesized within the scope of this thesis were also loaded with oxytetracycline (OTC), a commonly used antimicrobial agent, for a comparative evaluation. Although antibiotics are widely used in many applications, the development of drug resistance in bacteria is a serious issue. Therefore, instead of discovering new antibiotics, it is more appropriate to minimize the dosage of traditional antibiotics. It is crucial to deliver a sufficient bactericidal dose of the antibiotic directly to the infected area at the lowest possible drug dosage without exceeding systemic toxicity levels. One of the main focuses of this thesis is to investigate the simultaneous use of Ag nanoparticles to reduce the bactericidal dose of OTC. In this context, the antimicrobial properties of hydrogels obtained by loading OTC alone (PVP@PVA@OTC) or with Ag NPs (Ag@PVP@PVA@OTC) into the hydrogel structure were also investigated. Our findings showed that both Ag@PVP@PVA and Ag@PVP@PVA@OTC inhibited the growth of all microorganisms tested in this study. However, among the synthesized hydrogels, Ag@PVP@PVA was the only biomaterial that caused both inhibitory and microbicidal effects against all three clinical isolates. These results are promising, indicating that the Ag NP-loaded hydrogel could be a biomaterial exhibiting higher activity compared to traditional antimicrobial agents in applications requiring high antibacterial functionality. Additionally, the simultaneous use of Ag nanoparticles with an antibiotic may be a strategy to reduce antibiotic dosage to combat bacterial resistance. The antibacterial property added to the PVA hydrogels within the scope of this thesis, which exhibit high oxygen permeability, water absorption capacity, and high biocompatibility, increases the potential of this material for biomedical applications.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectSuper kapasitörtr_TR
dc.subjectNanoparçacıktr_TR
dc.subjectPolimerizasyontr_TR
dc.subjectAntibakteriyel Hidrojeltr_TR
dc.subjectModifikasyontr_TR
dc.subject.lcshKimyatr_TR
dc.titleGÜMÜŞ NANOPARÇACIKLARLA VE OKSİTETRASİKLİNLE MODİFİYE EDİLMİŞ SÜPER EMİCİ ANTİBAKTERİYEL HİDROJELLERİN SENTEZİtr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetYüksek ilaç taşıma kapasitesine sahip yeni ve etkin antibakteriyel hidrojeller, biyomedikal alandaki çalışmalar arasında dikkat çekici bir konumda yer almaktadır. Bu tez çalışmasında, antimikrobiyal aktivite gösteren gümüş nanoparçacıklar (Ag NP'ler) ile dekore edilmiş yeni bir hidrojel yapısının sentezi ve karakterizasyonu incelenmiştir. Bu kapsamda, poli(vinil alkol) (PVA) hidrojelleri, radyasyon ile başlatılan çapraz bağlama yöntemiyle sentezlenmiş, ardından hidrojellerin yüzeyleri, Atom Transfer Radikal Polimerizasyonu (ATRP) kullanılarak poli(vinil pirolidon) (PVP) ile aşılanmıştır. PVP ile aşılanmış PVA hidrojeller (PVP@PVA), herhangi bir indirgeme ajanı kullanmadan yapılarına absorbe edilen Ag+ iyonlarının ısıl indirgenmesi yoluyla Ag NP'ler ile modifiye edilmiştir (AgNP@PVP@PVA). PVA hidrojeli yapısındaki polimer zincirlerinin hareketlilikleri, çapraz bağlı yapıları nedeniyle kısıtlıdır. Oysa aşılanan PVP zincirleri, PVA’nın tersine daha kolay hareket edebilir ve karakteristik kararlı kılıcı özelliklerine bağlı olarak yapıya eklenen Ag nanoparçacıklarını yüksek düzeyde kararlı halde etme potansiyeli sergiler. Yüzeye aşılanan PVP katmanı, hidrojel yapısı içindeki Ag NP'lerin kararlılığı için bir matris görevi üstlenmiştir. Sentezlenen hidrojelleri şişme davranışları ve gözenek yapıları şişme testleri ve SEM analizi ile tespit edildi. Jellerin ilk ağırlıklarının yaklaşık 30 katına kadar su emerek süper emici hidrojel olarak davrandığı görüldü. PVA jellerin OH grupları bir ATRP başlatıcısıyla modifiye edildi ve bromlanan OH gruplarının miktarı (modifikasyon derecesi), FTIR spektrometresi ile yaklaşık %50 olarak hesaplandı. PVA jellerinin PVP ile modifikasyon derecesinin tespiti için üç farklı yöntem (FTIR ile pik alanlarının hesaplanması, kütle artışı ve Termogravimetrik analizi) kullanılmaktadır. Her üç yöntemden alınan sonuçlar birbiri ile yakın sonuçlar vererek yaklaşık %20 PVP modifikasyon derecesini elde edildiğini gösterdi. Hazırlanan PVP@PVA hidrojeli, gümüş nanoparçacıkların termal indirgenmesi sonrasında SEM analizi ile karakterize edildi ve ortalama boyutları 80 nm olan Ag nanoparçacıkların hidrojel yüzeyi boyunca homojen olarak dağılmış oldukları tespit edildi. XRD spektrometresi de gümüş nanoparçacıkların boyut dağılımını tespit etmek için kullanıldı. XRD deseninde, metalik Ag NP'lerin (111), (200) ve (220) kristal düzlemlerine karşılık gelen 2θ = 38.0°, 44.1° ve 65.1°'de üç belirgin kırınım zirvesi görüldü. Ag NP'ler içeren hidrojellerin antimikrobiyal etkinliği, Proteus mirabilis (gram-negatif bakteri), Staphylococcus epidermidis (gram-pozitif bakteri) ve Candida tropicalis (maya) hücre hatlarına karşı incelendi. Tez kapsamında sentezlenen PVP@PVA hidrojelleri, karşılaştırmalı bir değerlendirme yapmak amacıyla, yaygın olarak kullanılan bir antimikrobiyal ajan oksitetrasiklin (OTC) ile de yüklenmiştir. Antibiyotikler pek çok uygulamada yaygın kullanılsalar bakteriye neden olduğu ilaca direnç gelişimi ciddi bir sorundur. Bu nedenle, yeni antibiyotikler keşfetmek yerine geleneksel antibiyotiklerin dozajını en aza indirmek daha doğru bir yaklaşımdır. Sistemik toksisite düzeyini aşmadan yeterli bakterisidal dozda antibiyotiği doğrudan enfekte bölgeye mümkün olan en düşük ilaç dozajında iletmek oldukça önemlidir. OTC’nin bakterisidal dozunu azaltmak için Ag nanoparçacıklarla eşzamanlı kullanımının araştırılması tez kapsamında araştırılan temel odaklardan biridir. Bu bağlamda, OTC ‘nin hidrojel yapısına tek başına (PVP@PVA@OTC) veya Ag NP'ler ile birlikte (Ag@PVP@PVA@OTC) yüklenmesi ile elde edilen hidrojellerin de antimikrobiyal özellikleri araştırılmıştır. Bulgularımız, hem Ag@PVP@PVA hem de Ag@PVP@PVA@OTC'nin bu çalışmada test edilen tüm mikroorganizmaların büyümesini inhibe ettiğini gösterdi. Ancak, sentezlenen hidrojeller arasında 3 klinik izolatın tamamına karşı hem inhibitör hem de mikrobisidal etkiye neden olan tek biyomateryalın Ag@PVP@PVA olduğu görülmüştür. Bu sonuçlar, Ag NP yüklü hidrojelin yüksek antibakteriyel işlevsellik gerektiren uygulamalarda, geleneksel antimikrobiyal ajanlara kıyasla daha yüksek aktivite sergileyen bir biyomateryal olabileceğine dair umut vermektedir. Ayrıca Ag nanoparçacıkların bir antibiyotikle eşzamanlı kullanımları, bakteriyel direncin azaltılması amacıyla antibiyotik dozajının düşürülmesi için uygulanabilecek bir strateji olabilir. Yüksek oksijen geçirgenliği ve su emme kapasitesine ek olarak yüksek biyouyumluluk özelliği sergileyen PVA hidrojellerine tez kapsamında eklenen antibakteriyel özellik, bu malzemenin biyomedikal alanda kullanım potansiyelini arttırmaktadır.tr_TR
dc.contributor.departmentPolimer Bilimi ve Teknolojitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2024-10-15T07:07:00Z
dc.fundingYoktr_TR
dc.subtypepresentationtr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster