dc.contributor.advisor | Yavuz Ersan, Hülya | |
dc.contributor.author | Erdem, Gökçe | |
dc.date.accessioned | 2017-06-12T06:21:04Z | |
dc.date.available | 2017-06-12T06:21:04Z | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-01-18 | |
dc.identifier.uri | http://hdl.handle.net/11655/3481 | |
dc.description.abstract | The purpose of this thes
is
is the fabrication and performance evaluation of new
catalysts
which enable the elimination of toxic pollutants such as 4
-
Nitrophenol (4
-
NP) by
means of heterogeneous catalytic reduction
in
an
aq
ueous environment. Production of two
different catalysts was
achieved by the immobilization of the plasmonic gold nanoparticles
(AuNP) into the chitosan and titanium dioxide support materials, respectively. The
plasmonic catalytic activities of fabricated catalysts were evaluated within the reduction of
4
-
Nitrophen
ol in the presence of sodium borohydride (NaBH
4
)
as a reducin
g agent. The
effects of type of support material and size of nanoparticle as performance enhancing
parameter, loading amount of nanoparticle, catalyst amount and initial 4
-
Nitrophenol
concentrati
on as operational parameters are evaluated in batch fashion.
In line with this purpose, firstly the support materials were synthesized. Chitosan
microgel beads were obtained by the chemical modification of chitosan solution. The
monodisperse chitosan micr
ogel beads, 3 mm in size with the specific surface area of 1.3
m
2
/g, were synthesized by crosslinking reaction in which glutaraldehyde served as a cross
-
linker. Titanium dioxide (TiO
2
) spheres as second support material, were obtained by one
-
step sol
-
gel m
ethod. TiO
2
spheres in the size range of 0.7
-
1.2
m with the specific surface
area 277.4 m
2
/g were synthesized along with the hydrolysis of titania precursor, titanium
ii
isopropoxide in a continuous medium including methanol and acetonitrile. TiO
2
spheres
were derivatized with Aminopropyltriethoxysilane (APTES), that enables TiO
2
to adsorb
gold atoms through the amine groups on its surface. In the next stage, the support materials
were added into the solutions of gold nanoparticles that have been s
ynthesized with
Turkevich (12 nm) and Martin (3 nm) Methods, respectively. The bare, Turkevich AuNP
decorated and Martin AuNP decorated support materials were characterized by energy
-
dispersive x
-
ray spectroscopy, scanning electron microscopy, transmission
electron
microscopy, x
-
ray diffaraction spectrophotometry and surface area analysis via nitrogen
adsorption
-
desorption method.
The gold nanoparticle decorated chitosan microgel beads and TiO
2
spheres were
used in the reduction of 4
-
Nitrophenol, individually. The decoration with Martin AuNPs
with lower size resulted in a significant enhancement in the plasmonic catalytic reduction
rate owing to the electron transfer characteristics of AuNPs wit
h lower size. The complete
reduction of 4
-
Nitrophenol having initial concentration of 7.5 ppm was achieved within 12
minutes in the presence of 10 mg Martin AuNP decorated chitosan microgel beads as
catalyst (%2.5 (%w/w) AuNP loading). On the other hand, t
he complete reduction of 4
-
Nitrophenol having initial concentration of 7.5 ppm was achieved within 60 seconds in the
presence of 12.5 mg Martin AuNP decorated TiO
2
spheres as catalyst (%2 (%w/w) AuNP
loading).
The recovery and reusability studies, conducte
d under the same experimental
conditions, indicated that the catalysts are reusable
for reduction of 4
-
Nitrophenol.
In the plasmonic catalytic reduction of 4
-
Nitrophenol via Au/chitosan and Au/TiO
2
catalysts, higher catalytic activities were obtained when
compared to the other treatment
methods, introduced in literature, involving catalysts supported with similar forms of
different materials or different forms of similar materials. In this thesis, for the first time,
Au/chitosan catalyst in the microgel bea
d form and Au/TiO
2
catalyst in sphere form having
novel structures and sizes were synthesized via simple,
cost
-
effective, energy and time
saving and environmentally friendly methods.
Moreover, this study introduces
biodegradable, porous, low
-
cost, mechanic
ally stable catalysts that are able to form strong
interaction with metal nanoparticles to the catalytic applications in favor of high catalytic
activities | tr_TR |
dc.description.tableofcontents | TABLE OF
CONTENTS
Page
ABSTRACT
................................
................................
................................
...........................
i
ÖZET
................................
................................
................................
................................
....
ii
i
ACKNOWLEDGEMENTS
................................
................................
................................
..
v
TABLE OF CONTENTS
................................
................................
................................
.....
vi
LIST OF TABLES
................................
................................
................................
...............
ix
LIST OF
FIGURES
................................
................................
................................
...............
x
SYMBOLS AND ABBREVIATIONS
................................
................................
..............
xiii
1.
INTRODUCTION
................................
................................
................................
.........
1
2.
LITERATURE REVIEW
................................
................................
..............................
3
2.1. W
astewater and Common Pollutants........................................................
3
2.2. Nitrophenolic Compounds....................................................................
6
2.
2.1. Properties and Sources of 4
-
Nitrophenol
................................
............................
6
2
.2.2. Toxicological Profile of 4
-
Nitrophenol
................................
...............................
9
2.2.3
. Treatment Methods of 4
-
Nitrophenol
................................
................................
..
9
2.3. Plasmon
-
Enhanced Heterogen
eous Catalysis of 4
-
Nitrophenol........................
12
2.3.1. Properties and Synthesis of
AuNPs as
Plasmonic Catalyst
..............................
15
2.3.1.1. Turkevich Method
................................
................................
......................
16
2.3.1.2. Martin Method
................................
................................
............................
17
2.3.2. Properties and Synthesis of a Support Material
................................
................
18
2.3.2.1. Chitosan as a Support Material
................................
................................
...
20
2.3.2.2. Titanium Dioxide as a Support Material
................................
....................
24
3.
EXPERIMENTAL METHODS
................................
................................
..................
27
3.1. Plasmon
-
Enhance
d Heterogeneous Catalyst Design....................................
27
3.1.1. Synthesis of
AuNPs
as
Promising Plasmonic Catalyst
................................
.....
27
3.1.1.1. Materials
................................
................................
................................
.....
27
3.1.1.2. Synt
hesis of AuNP by Turkevich Method
................................
..................
27
3.1.1.3. Synthesis of AuNP by Martin Method
................................
.......................
27
vii
3.1.2
. Synthesis of AuNP
Decorated Chitosan Microgel Beads
................................
.
28
3.1.2.1. Materials
................................
................................
................................
.....
28
3.1.2.2. Synthesis of Bare Chitosan Microgel Beads as a Support Material
...........
28
3.1.2.3. Decoration of Chitosan Microgel Beads with Turkevich AuNP and Martin
AuNP
................................
................................
................................
.......................
29
3.1.3. Synthesis of
AuNP
Decorated Polydisperse Titanium Dioxide Spheres
..........
29
3.1.3.1. Materials
................................
................................
................................
.....
29
3.1.3.2. Synthesis of Bare Titanium Dioxide Spheres
Spheres as Support Material
................................
................................
................................
................................
.
30
3.1.3.3.
Derivatization
of
Titanium
Dioxide
Spheres
with
Aminopropyltriethoxysilane
................................
................................
....................
30
3.1.3.4. De
coration of Titanium Dioxide
Spheres with Turkevich AuNP and Martin
AuNP
................................
................................
................................
.......................
30
3.2. Characterization Studies.....................................................................
31
3.3. Plasmon
-
Enhanced Heterogen
eous Catalysis of 4
-
Nitrophenol........................
33
3.3.1. Materials
................................
................................
................................
............
33
3.3.2. Reduction of 4
-
Nitrophenol by the Turkevich AuNP and Martin AuNP
Decorated Chitosan Microgel Beads
................................
................................
...........
34
3.3.3. Reduction of 4
-
Nitrophenol by the Turkevich AuNP and Martin AuNP
Decorated Titanium Dioxide Spheres
................................
................................
.........
35
3.3.4. Recovery and Reusability of Catalyst
................................
...............................
36
4.
RESULTS & DISCUSSION
................................
................................
.......................
38
4.1. Synthesis and Charact
erization of Plasmonic Catalyst..................................
38
4.1.1. Synthesis and Characterization of
AuNPs
Synthesized by Turkevich and Martin
Methods
................................
................................
................................
.......................
38
4.2. Synthesis and Characterization of Support Materials Decorated with T
urkevich
AuNPs and Martin AuNPs........................................................................
39
4.2.1. Synthesis and Char
acte
rization of Bare and AuNP
Decorated Chitosan
Microgel Beads
................................
................................
................................
............
39
4.2.2. Synthesis and Char
acterization of Bare and AuNP
Decorated Titanium Dioxide
Spheres
................................
................................
................................
........................
42
4.3.
Plasmon
-
Enhanced Hetero
geneous Catalytic Activity Runs...........................
45
4.3.1. Reduction Mechanism of 4
-
Nitrophenol
................................
...........................
45
viii
4.3.2. Plasmonic Catalysis of 4
-
Nitrop
henol in the
Presence of AuNP
Decorated
Chitosan Microgel Beads
................................
................................
............................
46
4.3.2.1. Effect of AuNP Size and Loading
................................
..............................
47
4.3.2.2. Effect of Catalyst Amount
................................
................................
..........
49
4.3.2.3. Effect of Initial 4
-
Nitrophenol
Concentration
................................
............
50
4.3.2.4. Recovery and Reusability
................................
................................
...........
51
4.3.3. Plasmonic Catalysis of 4
-
Nitrop
henol in the Presence o
f AuNP Decorated
Titanium Dioxide
Spheres
................................
................................
...........................
53
4.3.3.1. Effect of AuNP Size and Loading
................................
..............................
54
4.3.3.2. Effect of Catalyst Amount
................................
................................
..........
55
4.3.3.3. Effect of Initial 4
-
Nitrophenol
Concentration
................................
............
56
4.3.3.4. Recovery and
Reusability
................................
................................
...........
57
5.
CONCLUSION
................................
................................
................................
...........
60
REFERENCES.............................................
...
........................................ 3
CURRICULUM VITAE
................................
................................
................................
.....
71 | tr_TR |
dc.language.iso | en | tr_TR |
dc.publisher | Fen Bilimleri Enstitüsü | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | tr_TR |
dc.subject | Atıksu Arıtımı | tr_TR |
dc.subject | Wastewater treatment | tr_TR |
dc.subject | 4 - Nitrophenol | |
dc.subject | Plasmonic Catalysis | |
dc.subject | Gold Nanoparticle | |
dc.subject | Chitosan Microgel Beads | |
dc.subject | Titanium Spheres | |
dc.subject | 4 - Nitrofenol | |
dc.subject | Plazmonik Katalizleme | |
dc.subject | Altın Nanopartikül | |
dc.subject | Kitosan Mikrojel Tanecikler | |
dc.subject | Titanyum Küreler | |
dc.title | Fenolik Bileşiklerin Katalitik Olarak İndirgenmesinde Kullanilmak Üzere Kitosan ve Titanyum Dioksit Destekli Plazmonik Katalizör Sentezi | tr_TR |
dc.type | info:eu-repo/semantics/masterThesis | tr_TR |
dc.description.ozet | Bu tez kapsamında, atık sularda sıklıkla rastlanan toksik fenolik bileşiklerden 4
-
Nitrofenolün
sulu ortamda
katalitik indirgenme
yoluyla giderimi için
uygun 2 yeni
heterojen plazmonik katalizör sisteminin geliştirilmesi ve bu si
stemlerin katalitik
performansı
nın belirlenmesi amaçlanmıştır. Heterojen katalizörlerin üretiminin, plazmonik
altın nanopartiküllerin (AuNP), son yıllarda önem kazanmış ve gelecek vaadeden kitosan
ve titanyum dioksit destek maddelerine immobilizasyonu ile
gerçekleştirilmesi
hedeflenmiştir. Katalizörlerin katalitik aktiviteleri 4
-
Nitrofenolün indirgeme ajanı olan
NaBH
4
varlığında indirgenmesi sırasında değerlendirilmiştir. Bu deneylerde, destek
madde
-
metal nanopartikül etkileşiminin, AuNP boyutunun, AuNP yük
leme miktarının,
katalizör miktarının ve başlangıç 4
-
Nitrofenol başlangıç konsantrasyonun katalitik
aktiviteye etkisi kesikli sistemde belirlenmiştir.
Bu amaç doğrultusunda ilk olarak katalizör destek maddeleri üretilmiştir. Mikrojel
formundaki kitosan tan
ecikler, kitosan çözeltisinin kimyasal modifikasyonuyla meydana
gelmiştir. Glutaraldehitin çapraz bağlayıcı olarak kullanıldığı çapraz bağlama işleminin
sonucunda 3 mm çapında, eş boyutlu, 1.3 m
2
/g yüzey alanına sahip kitosan tanecikler elde
edilmiştir. Di
ğer bir katalizör destek maddesi olan TiO
2
küreler ise tek aşamalı sol
-
jel
yöntemiyle üretilmiştir. Küreler, titanyum isopropoksit prekürsörünün, methanol ve
iv
asetonitrilden oluşan çözücü ortamında hidrolizi ile elde edilmiştir. İşlem sonucunda, 0.7
-
1.2
m
boyut aralığında, 277.4 m
2
/g yüzey alanına sahip küreler sentezlenmiştir.
Küreler
,
yapısına altın nanopartiküllerin bağlanabilmesi için Aminopropiltrietoksisilan (APTES) ile
muamele edilmiş ve yapısına fonksiyonel amin grubu eklenmiştir. Katalizör destek
m
addeleri, Turkevich ve Martin metotlarıyla sentezlenen, sırasıyla 12 ve 3 nm boyutlarına
sahip altın nanopartiküllerinin çözeltilerine ayrı ayrı eklenmiş ve bu nanopartiküllerle
dekore edilmişlerdir. Altın nanopartiküllerle dekore edilmiş ve edilmemiş kito
san mikrojel
tanecikler ve TiO
2
küreler taramalı elektron mikroskobu, geçirimli elektron mikroskobu,
X
-
ışını kırınım spektrofotometresi, EDX ve azot adsorpsiyon
-
desorpsiyon yöntemiyle
yüzey alanı analizi ile karakterize edilmişlerdir.
Heterojen katalizörl
er
4
-
Nitrofenolün katalitik indirgenmesi işleminde
kullanılmışlardır. Küçük altın nanopartikülllerin elektron transfer karakteristiklerinden
dolayı, Martin AuNP ile dekore edilmiş kitosan mikrojel taneciklerin ve TiO
2
kürelerin
Turkevich AuNP ler ile dekor
e edilenlerle kıyaslandığında plazmonik katalitik aktivitede
önemli bir gelişime yol açtığı gözlenmiştir. 2.5
% (w/w %)
Martin
AuNp yükleme
miktarına sa
hip 10 mg Au/Kitosan katalizörün, 7.5
ppm başlangıç konsantrasyonuna sahip
4
-
Nitrofenolü
12 dakika s
onununda tamamen indirgediği gözlenmiştir.
%2
Martin
AuNp
yükleme miktarına sahip 12.5 mg Au/TiO
2
katalizörün ise
7.5 ppm başlangıç
konsantrasyonuna sahip 4
-
Nitrofenolü 0 saniye sonunda
tamamen
indirgediği
gözlenmiştir.
Katalizörlerin geri kazanımının
ve aynı reaksiyon şartlarında tekrar
kullanılmasının mümkün olduğu gözlenmiştir.
Literatürde önerilen benzer maddelerin farklı formlarını veya farklı maddelerin
benzer formlarını içeren heterojen katalizörlerin kullanıldığı giderilme yöntemleriyle
karşıla
ştırıldığında,
4
-
Nitrofenol bertarafının,
üretilen Au/Kitosan ve Au/TiO
2
katalizörlerin varlığında yürütülen katalitik indirgeme yöntemiyle daha hızlı ve daha
yüksek verimle gerçekleştiği belirlenmiştir. Bu çalışmayla, ilk kez, basit üretim
yöntemleriyle v
e kısa zamanda, enerji tasarruflu, biyouyumlu, yüksek katalitik aktiviteye
sahip mikrojel tanecik formunda Au/kitosan ve özgün boyut ve yapıya sahip küre
formunda Au/TiO
2
üretilmiştir. Mekanik dayanımı yüksek, yüksek metal etkileşim
kapasitesine sahip dest
ek maddelerine yeni bir kullanım alanı kazandırılmıştır. | tr_TR |
dc.contributor.department | Kimya Mühendisliği | tr_TR |