Basit öğe kaydını göster

dc.contributor.advisorTOPCU, Ali
dc.contributor.authorEghbalian, Sattar
dc.date.accessioned2017-06-08T13:59:47Z
dc.date.available2017-06-08T13:59:47Z
dc.date.issued2017
dc.date.submitted2017-06-01
dc.identifier.citation[1] McSweeney, P. L. H.; Sousa, M. J., Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review, Lait, 80, 293-324, 2000. [2] Walstra, P.; Wouters, J. T. M.; Geurts, T. J., Dairy Science and Technology. Taylor & Francis Group: USA, p 763, 2006. [3] Miočinović, J.; Puđa, P.; Radulović, R.; Pavlović, V.; Miloradović, Z.; Radovanović, M.; D., P., Development of low fat UF cheese technology, Mljekarstvo, 61, 33-44, 2011. [4] Akbarian Moghari, A.; Razavi, S. H.; Ehsani, M. R.; Mousavi, M., Development and critical quality characterization of functional UF-Feta cheese by Incorporating probiotic bacteria, Journal of Food Processing and Preservation, 39, 599-605, 2015. [5] Cavanagh, D.; Fitzgerald, G. F.; McAuliffe, O., From field to fermentation: the origins of Lactococcus lactis and its domestication to the dairy environment, Food Microbiol, 47, 45-61, 2015. [6] Sousa, M. J.; Ardö, Y.; McSweeney, P. L. H., Advances in the study of proteolysis during cheese ripening, International Dairy Journal, 11, 327-345, 2001. [7] Law, M. H. E. Ultra Filtration (UF) Process development for the production of Camembert cheese. Massey University, New Zealand, 2010. [8] Settanni, L.; Moschetti, G., Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits, Food Microbiol, 27, 691-7, 2010. [9] Burns, P.; Cuffia, F.; Milesi, M.; Vinderola, G.; Meinardi, C.; Sabbag, N.; Hynes, E., Technological and probiotic role of adjunct cultures of non-starter lactobacilli in soft cheeses, Food Microbiol, 30, 45-50, 2012. [10] Drake, M. A.; Herrett, W.; Boylston, T. D.; Swanson, B. G., Sensory evaluation of reduced fat cheeses, Journal of Food Science, 60, 898, 1995. [11] Beresford, T.; Williams, A., The Microbiology of Cheese Ripening. Cheese: Chemistry, Physics and Microbiology, third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 287-318, 2017. [12] Ardö, Y., Flavour and texture in low-fat cheese. Microbiology and Biochemistry of Cheese and Fermented Milk, (eds: Law, B. A. E., Springer US: London, 207- 218, 1997. [13] El Soda, M., Control and enhancement of flavour in cheese. Microbiology and Biochemistry of Cheese and Fermented Milk, (eds: Law, B. A. E., Springer US: London, 219-252, 1997. [14] El Soda, M.; Madkor, S. A.; Tong, P. S., Adjunct cultures: recent developments and potential significance to the cheese industry, J Dairy Sci, 83, 609-19, 2000. [15] Muehlhoff, E.; Bennett, A.; McMahon, D., Milk and Dairy Products in Human Nutrition. In FAO: Rome, 2013; pp 1-9. [16] Fox, P. F.; McSweeney, P. L. H., Dairy Chemistry and Biochemistry. Thomson Science: UK, p 478;1989. [17] Bulat, T. Utilization of probiotic Enterococcus faecium as adjunct cultures in white cheese production and its effects on oxidation-reduction potential and cheese quality. Msc Thesis, Hacettepe University, Turkey, 2011. [18] Fox, P. F.; McSweeney, P. L. H., Cheese: An Overview. Cheese: Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 1-18, 2017. [19] Fox, P. F.; Guinee, T. P.; Cogan, T. M.; McSweeney, P. L. H., Fundamentals of Cheese Science. Aspen Publishers: Gaithersburg, Maryland, p 638;2000. [20] Anonymous, Hayvancılık Özel Ihtısas Komısyon Raporu, B: 2873 - ÖİK: 723, Ankara, 2014. [21] Anonymous, Sekizinci Beş Yıllık Kalkınma Planı Gıda Sanayi Özel İhtisas Komisyonu, DPT: 2636-OIK: 644, Ankara, 2001. [22] Wishah, R. Utilization of some adjunct bacteria strains in cheese production in addition to starter culture and their effects on the cheese properties. Hacettepe University, Ankara, 2007. [23] Strathmann, H.; Giorno, L.; Drioli, E., An Introduction to Membrane Science and Technology. In Technology, M., Ed. Italy, 2006. [24] Pouliot, Y., Membrane processes in dairy technology - From a simple idea to worldwide panacea, International Dairy Journal, 18, 735-740, 2008. [25] Lonsdale, H. K., The growth of membrane technology, Journal of Membrane Science, 10, 81-181, 1982. [26] Meares, P., Membrane science and technology. Edited by Y. Osada and T. Nakagawa'. Marcel Dekker Inc., New York, 1992. pp. vii + 467, ISBN 0-8247- 8694-7, Polymer International, 33, 440-440, 1994. [27] Steiner, R., Microfiltration and Ultrafiltration - Principles and Applications, Chemie Ingenieur Technik, 69, 1479-1479, 1997. [28] Drioli, E.; Romano, M., Progress and New perspectives on integrated membrane operations for sustainable industrial growth, Industrial & Engineering Chemistry Research, 40, 1277-1300, 2001. [29] Bhattacharyya, D.; Butterfield, D. A., New insights into membrane science and technology: Polymeric and biofunctional membranes. Elsevier: Amsterdam;2003. [30] Baker, R. W., Membrane Technology. Kirk-Othmer Encyclopedia of Chemical Technology, second (eds: John Wiley & Sons, Inc.: U.K, 2000. [31] Strathmann, H., Ion-exchange membrane separation processes / Heiner Strathmann. Elsevier: Amsterdam;2004. [32] Marella, C.; Muthukumarappan, K.; Metzger, L. E., Application of membrane separation technology for developing novel dairy food ingredients, Food Processing & Technology, 2013. [33] Schlosser, S., Advanced unit operations in food biotechnology-membrane filtration. Engineering Aspects of Food Biotechnology, (eds: Teixeira, J. A.; Vicente, A. A., Taylor & Francis Group: London-New York, 145-182, 2014. [34] Kumar, P.; Sharma, N.; Ranjan, R.; Kumar, S.; Bhat, Z. F.; Jeong, D. K., Perspective of membrane technology in dairy industry: A Review, Asian- Australasian Journal of Animal Sciences, 26, 1347-1358, 2013. [35] Mulder, M., Basic Principles of Membrane Technolog. Kluwer Academic Publishers: Netherlands, p 557;1997. [36] Rosenberg, M., Current and future applications for membrane processes in the dairy industry, Trends in Food Science & Technology, 6, 12-19, 1995. [37] Mistry, V. V., Cheese | Membrane Processing in Cheese Manufacture Encyclopedia of Dairy Sciences, Second (eds: Fuquay, J. w.; Fox, P. F.; McSweeney, P. L. H., Academic Press: San Diego, 618-624, 2002. [38] Mistry, V. V.; Maubios, J. L., Application of Membrane Separation Technology to Cheese Production. Cheese Chemistry, Physics and Microbiology Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 261-286, 2017. [39] Lo, C. G.; Bastian, E. D., Incorporation of native and denatured whey proteins into cheese curd for manufacture of reduced fat, Havarti-type Cheese1, J Dairy Sci, 81, 16-24, 1998. [40] McSweeney, P. L. H., Ultrafiltration of cheesemilk A2 Cheese Problems Solved, (eds: Woodhead Publishing: 30-33, 2007. [41] Kilara, A.; Chandan, R. C., Greek-style yogurt and related products. Manufacturing Yogurt and Fermented Milk, Second (eds: Chandan, R. C.; Kilara, A., Wiley-Blackwell: UK, 296-318, 2013. [42] Crabbe, M. J. C., Rennets: General and Molecular Aspects. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 19-46, 2017. [43] Dejmek, P.; Walstra, P., The Syneresis of Rennet-coagulated Curd. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 71-104, 2017. [44] Huffman, L. M.; Kristoffersen, T., Role of lactose in Cheddar cheese manufacturing and ripening, Journal of Dairy Science and Technology, 19, 151- 162, 1984. [45] O'Keeffe, R. B.; Fox, P. F.; Daly, C., Proteolysis in Cheddar cheese: influence of the rate of acid production during manufacture, Journal of Dairy Research, 42, 111-122, 1975. [46] McSweeney, P. L. H., Biochemistry of Cheese Ripening, International Journal of Dairy Technology, 57, 127-144, 2004. [47] Guinee, T. P.; Fox, P. F., Salt in Cheese: Physical, Chemical and Biological Aspects. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 207-260, 2017. [48] Parente, E.; Cogan, T. M., Starter Cultures: General Aspects. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 123-148, 2017. [49] Turner, K. W.; Thomas, T. D., Lactose fermentation in Cheddar cheese and the effect of salt, New Zealand Journal of Dairy Science and Technology, 15, 265- 276, 1980. [50] McSweeney, P. L. H.; Fox, P. F., Metabolism of Residual Lactose and of Lactate and Citrate. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 361-372, 2017. [51] Bouzas, J.; Kantt, C. A.; Bodyfelt, F.; Torres, J. A., Simultaneous determination of sugars and organic acids in Cheddar cheese by high-performance liquid chromatography, Journal of Food Science, 56, 276–278, 1991. [52] El Soda, M.; Law, J.; Tsakalidou, E.; Kalantzopoulos, G., Lipolytic activity of cheese related microorganisms and its impact on cheese flavour. Developments in Food Science, (eds: George, C., Elsevier: 1823-1847, 1995. [53] Collins, Y. F.; McSweeney, P. L. H.; Wilkinson, M. G., Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge, International Dairy Journal, 13, 841-866, 2003. [54] Walstra, P.; Jenness, R.; Badings, H. T., Dairy chemistry and physics. Wiley; 1984. [55] Fox, P. F.; Uniacke-Lowe, T.; McSweeney, P. L. H.; O’Mahony, J. A., Dairy Chemistry and Biochemistry. Second ed.; Springer: Switzerland, p 569;2015. [56] Sørhaug, T.; Ordal, Z. J., Cell-Bound Lipase and Esterase of Brevibacterium linens, Applied Microbiology, 27, 607-608, 1974. [57] Morris, H. A.; Jezeski, J. J., The action of microorganisms on fats. II. Some characteristics of the lipase system of Penicillium Roqueforti, J Dairy Sci, 36, 1285-1298, 1953. [58] Lamberet, G.; Lenoir, J., Les caractères du système lipolytique de l'espèce Penicillium caseicolum. Nature du système, Lait, 56, 119-134, 1976. [59] Kondyli, E.; Katsiari, M. C.; Masouras, T.; Voutsinas, L. P., Free fatty acids and volatile compounds of low-fat Feta-type cheese made with a commercial adjunct culture, Food Chemistry, 79, 199-205, 2002. [60] Molimard, P.; Spinnler, H. E., Review: Compounds involved in the flavor of surface mold-ripened Cheeses: Origins and Properties, J Dairy Sci, 79, 169-184, [61] Upadhyay, V. K.; McSweeney, P. L. H.; Magboul, A. A. A.; Fox, P. F., Proteolysis in Cheese during Ripening. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 391-434, 2017. [62] McSweeney, P. L. H.; Fox, P. F.; Olson, N. F., Proteolysis of bovine caseins by cathepsin D: Preliminary observations and comparison with chymosin, International Dairy Journal, 5, 321–336, 1995. [63] Visser, F. M. W.; Groot-Mostert, A. E. A., Contribution of enzymes from rennet, starter bacteria and milk to proteolysis and flavour development in Gouda cheese. 4. Protein breakdown: a gel electrophoretic study, Netherland Milk Dairy Journal, 31, 247-264, 1977. [64] Considine, T.; Healy, A.; Kelly, A. L.; McSweeney, P. L. H., Proteolytic specificity of elastase on bovine β-casein, Food Chemistry, 66, 463-470, 1999. [65] Verdi, R. J.; Barbano, D. M., Effect of coagulants, somatic cell enzymes, and extracellular bacterial enzymes on plasminogen activation, J Dairy Sci, 74, 772- 782, 1991. [66] Fox, P. F.; McSweeney, P. L. H., Proteolysis in cheese during ripening, Food Reviews International, 12, 457-509, 1996. [67] Yvon, M.; Rijnen, L., Cheese flavour formation by amino acid catabolism, International Dairy Journal, 11, 185-201, 2001. [68] Chamba, J.-F.; Irlinger, F., Secondary and Adjunct Cultures. Cheese Chemistry, Physics and Microbiology, Third (eds: Fox, P. F.; McSweeney, P. L. H.; Cogan, T. M.; Guinee, T. P., Academic Press: New York, 191-206, 2017. [68] Rattray, F. P.; Eppert, I. Cheese | Secondary Cultures. Encyclopedia of Dairy Sciences, Second (eds: Fuquay, J. w.; Fox, P. F.; McSweeney, P. L. H., Academic Press: San Diego, USA, 567-573, 2011. [69] Montel, M.C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D. A.; Desmasures, N.; Berthier, F., Traditional cheeses: Rich and diverse microbiota with associated benefits, International Journal of Food Microbiology, 177, 136- 154, 2014. [70] Gatti, M.; Bottari, B.; Lazzi, C.; Neviani, E.; Mucchetti, G., Invited review: Microbial evolution in raw-milk, long-ripened cheeses produced using undefined natural whey starters, J Dairy Sci, 97, 573-591, 2014. [71] Bokulich, N. A.; Mills, D. A., Facility-specific "house" microbiome drives microbial landscapes of artisan cheesemaking plants, Appl Environ Microbiol, 79, 5214-23, 2013. [72] Folkertsma, B.; Fox, P. F.; McSweeney, P. L. H., Accelerated ripening of Cheddar cheese at elevated temperatures, International Dairy Journal, 6, 1117-1134, 1996. [73] Fitzsimons, N. A.; Cogan, T. M.; Condon, S.; Beresford, T., Spatial and temporal distribution of non-starter lactic acid bacteria in Cheddar cheese, J Appl Microbiol, 90, 600-8, 2001. [74] Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Mancini, L.; Fox, P. F., Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening, Trends in Food Science & Technology, 45, 167-178, 2015. [75] Lynch, C. M.; McSweeney, P. L. H.; Fox, P., F.; Cogan, T. M.; Drinan, F. D., Contribution of starter lactococci and non-starter lactobacilli to proteolysis in Cheddar cheese with a controlled microflora, Lait, 77, 441-459, 1997. [76] Williams, A. G.; Banks, J. M., Proteolytic and other hydrolytic enzyme activities in non-starter lactic acid bacteria (NSLAB) isolated from cheddar cheese manufactured in the United Kingdom, International Dairy Journal, 7, 763-774, 1997. [77] Crow, V.; Curry, B.; Hayes, M., The ecology of non-starter lactic acid bacteria (NSLAB) and their use as adjuncts in New Zealand Cheddar, International Dairy Journal, 11, 275-283, 2001. [78] Perry, K. D.; McGillivray, W. A., The manufacture of ‘normal’ and ‘starter-free’ Cheddar cheese under controlled bacteriological conditions, Journal of Dairy Research, 31, 155–165, 1964. [79] Reiter, B.; Fryer, T. F.; Pickering, A.; Chapman, H. R.; Lawrence, R. C.; Sharpe, M. E., The effect of the microbial flora on the flavour and free fatty acid composition of cheddar cheese, Journal of Dairy Research, 34, 257–272, 1967. [80] Ristagno, D. Evaluation of microbial adjuncts and their effect on the ripening of Cheddar cheese. PhD Thesis, University College Cork, Irland, 2013. [81] Katsiari, M. C.; Voutsinas, L. P.; Kondyli, E.; Alichanidis, E., Flavour enhancement of low-fat Feta-type cheese using a commercial adjunct culture, Food Chemistry, 79, 193-198, 2002. [82] Tungjaroenchai, W.; White, C. H.; Holmes, W. E.; Drake, M. A., Influence of adjunct cultures on volatile free fatty acids in reduced-fat Edam cheeses, J Dairy Sci, 87, 3224-34, 2004. [83] Di Cagno, R.; De Pasquale, I.; De Angelis, M.; Buchin, S.; Rizzello, C. G.; Gobbetti, M., Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese, J Dairy Sci, 97, 72-84, 2014. [84] Bhowmik, T.; Riesteren, B.; Boekel, M. A. J. S. v.; Marth, E. H., Characteristics of low-fat Cheddar cheese made with added Micrococcus or Pediococcus species, Milchwissenschaft, 45, 230-235, 1990. [85] L., S. J.; LENOIR, J.; Schmidt, M., Contribution à l'étude de la flore levure du fromage de Camembert (II), Lait, 60, 272-282, 1980. [86] Lucia, V.; Daniela, B.; Rosalba, L., Use of Fourier transform infrared spectroscopy to evaluate the proteolytic activity of Yarrowia lipolytica and its contribution to cheese ripening, International Journal of Food Microbiology, 69, 113-123, 2001. [87] Mehlomakulu, N. N. Yeast as Adjunct Starter Cultures in Cheese Making. University of the Free State, Master degree thesis, Bloemfontein, 2011. [88] Crow, V. L.; Coolbear, T.; Gopal, P. K.; Martley, F. G.; McKay, L. L.; Riepe, H., The role of autolysis of lactic acid bacteria in the ripening of cheese, International Dairy Journal, 5, 855-875, 1995. [89] Fox, P. F.; Wallace, J. M.; Morgan, S.; Lynch, C. M.; Niland, E. J.; Tobin, J., Acceleration of cheese ripening, Antonie Van Leeuwenhoek, 70, 271-97, 1996. [90] O'Donovan, C. M.; Wilkinson, M. G.; Guinee, T. P.; Fox, P. F., An investigation of the autolytic properties of three lactococcal strains during cheese ripening, International Dairy Journal, 6, 1149-1165, 1996. [91] Collins, Y. F.; McSweeney, P. L.; Wilkinson, M. G., Evidence of a relationship between autolysis of starter bacteria and lipolysis in cheddar cheese during ripening, J Dairy Res, 70, 105-13, 2003. [92] Facklam, R.; Elliott, J. A., Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci, Clin Microbiol Rev, 8, 479-95, 1995. [93] Samaržija, D.; Antunac, N.; Havranek, J. L., Taxonomy, physiology and growth of Lactococcus lactis: a review, Mljekarstvo, 51, 35-48, 2001. [94] Teuber, M.; Geis, A., The Genus Lactococcus. The Prokaryotes: Volume 4: Bacteria: Firmicutes, Cyanobacteria, (eds: Dworkin, M.; Falkow, S.; Rosenberg, E.; Schleifer, K.; Stackebrandt, E., Springer US: New York, NY, 205-228, 2006. [95] Bourdichon, F.; Casaregola, S.; Farrokh, C.; Frisvad, J. C.; Gerds, M. L.; Hammes, W. P.; Harnett, J.; Huys, G.; Laulund, S.; Ouwehand, A.; Powell, I. B.; Prajapati, J. B.; Seto, Y.; Ter Schure, E.; Van Boven, A.; Vankerckhoven, V.; Zgoda, A.; Tuijtelaars, S.; Hansen, E. B., Food fermentations: Microorganisms with technological beneficial use, International Journal of Food Microbiology, 154, 87-97, 2012. [96] FDA, Generally Recognised as Safe (GRAS) Notifications. In 2010. [97] Wouters, J. T. M.; Ayad, E. H. E.; Hugenholtz, J.; Smit, G., Microbes from raw milk for fermented dairy products, International Dairy Journal, 12, 91-109, 2002. [98] Ross, R. P.; Stanton, C.; Hill, C.; F. Fitzgerald, G.; Coffey, A., Novel cultures for cheese improvement, Trends in Food Science & Technology, 11, 96-104, 2000. [99] Terzaghi, B. E.; Sandine, W. E., Improved medium for Lactic Streptococci and their bacteriophages, Applied Microbiology, 29, 807-813, 1975. [100] Harrigan, W.F. Laboratory Methods in Food Microbiology. Third Ed. Academic press, San Diego, USA, 1998. [101] Kasımoğlu, A.; Göncüoğlu, M.; Akgün, S., Probiotic white cheese with Lactobacillus acidophilus, International Dairy Journal, 14, 1067-1073, 2004. [102] Bönisch, M. P.; Heidebach, T. C.; Kulozik, U., Influence of transglutaminase protein cross-linking on the rennet coagulation of casein, Food Hydrocolloids, 22, 288-297, 2008. [103] Aaltonen, T.; Huumonen, I.; Myllärinen, P., Controlled transglutaminase treatment in Edam cheese-making, International Dairy Journal, 38, 179-182, 2014. [104] IDF, Determination of the total solids content. Cheese and processed cheese, Edition (eds: Editor, International Dairy Federation: Brussels, Belgium, 1982. [105] Ardö, Y.; Polychroniadou, A., Laboratory manual for chemical analysis of cheese. Publications Office: Luxembourg;1999. [106] Fox, P. F., Potentiometric determination of salt in cheese, J Dairy Sci, 46, 744- 745, 1963 [107] (TS-591), T. S. E., Beyaz peynir standardı. Edition (eds: Editor, Turkey, 2013. [108] IDF, Milk and milk products. Determination of nitrogen content and crude protein calculation — Kjeldahl principle, Edition (eds: Editor, International Dairy Federation: Brussels, Belgium, 1986. [109] Kuchroo, C. N.; Fox, P. F., Fractionation of the water soluble nitrogen from cheddar cheese: chemical methods, Milchwissenschaft, 37, 76-88, 1982. [110] Topçu, A.; Saldamli, I., Proteolytical, chemical, textural and sensorial changes during the ripening of Turkish white cheese made of pasteurized cows' milk, International Journal of Food Properties, 9, 665-678, 2006. [111] Andrews, A. T., Proteinases in normal bovine milk and their action on caseins, Journal of Dairy Research, 50, 45-55, 1983. [112] Shalabi, S. I.; Fox, P. F., Electrophoretic analysis of cheese: Comparison of methods, Irish Journal of Food Science and Technology, 11, 135-151, 1987. [113] Blakesley, R. W.; Boezi, J. A., A new staining technique for proteins in polyacrylamide gels using Coomassie brilliant blue G250, Analytical Biochemistry, 82, 580-582, 1977. [114] De Jong, C.; Badings, H. T., Determination of free fatty acids in milk and cheese procedures for extraction, clean up, and capillary gas chromatographic analysis, Journal of High Resolution Chromatography, 13, 94-98, 1990. [115] Manolaki, P.; Katsiari, M. C.; Alichanidis, E., Effect of a commercial adjunct culture on organic acid contents of low-fat Feta-type cheese, Food Chemistry, 98, 658-663, 2006. [116] Califano, A. N.; Bevilacqua, A. E., Multivariate analysis of the organic acids content of Gouda type cheese during ripening, Journal of Food Composition and Analysis, 13, 949-960, 2000. [117] Zeppa, G.; Conterno, L.; Gerbi, V., Determination of organic acids, sugars, diacetyl, and acetoin in cheese by high-performance liquid chromatography, J Agric Food Chem, 49, 2722-6, 2001. [118] Delgado, F. J.; González-Crespo, J.; Cava, R.; García-Parra, J.; Ramírez, R., Characterisation by SPME–GC–MS of the volatile profile of a Spanish soft cheese P.D.O. Torta del Casar during ripening, Food Chemistry, 118, 182-189, 2010. [119] Özer, B.; Kirmaci, H. A.; Hayaloglu, A. A.; Akçelik, M.; Akkoç, N., The effects of incorporating wild-type strains of Lactococcus lactis into Turkish white-brined cheese (Beyaz peynir) on the fatty acid and volatile content, International Journal of Dairy Technology, 64, 494-501, 2011. [120] Trinh, K.; Glasgowe, S., On the texture profile analysis test. In Chemeca 2012: Quality of life through chemical engineering, Barton, A.C.T.: Engineers Australia: Wellington, New Zealand, 2012. [121] Tunick, M. H., Rheology of dairy foods that gel, stretch, and fracture, J Dairy Sci, 83, 1892-8, 2000. [122] Jacob, H. E., Redox Potential. Methods in Microbiology, (eds: Norris, J. R.; Ribbons, D. W., Academic Press: London, 91-123, 1970. [123] Enstitüsü, T. S., Çiğ süt standardı (TS-1018). Cow milk- Raw, Edition (eds: Editor, Türk Standartları Enstitüsü: Ankara, 14, 1994. [124] Thage, B. V.; Broe, M. L.; Petersen, M. H.; Petersen, M. A.; Bennedsen, M.; Ardö, Y., Aroma development in semi-hard reduced-fat cheese inoculated with Lactobacillus paracasei strains with different aminotransferase profiles, International Dairy Journal, 15, 795-805, 2005. [125] Karami, M.; Ehsani, M. R.; Mousavi, S. M.; Rezaei, K.; Safari, M., Changes in the rheological properties of Iranian UF-Feta cheese during ripening, Food Chemistry, 112, 539-544, 2009. [126] Soltani, M.; Guzeler, N.; Hayaloglu, A. A., The influence of salt concentration on the chemical, ripening and sensory characteristics of Iranian white cheese manufactured by UF-Treated milk, J Dairy Res, 82, 365-74, 2015. [127] Awad, S., Texture and flavour development in Ras cheese made from raw and pasteurised milk, Food Chemistry, 97, 394-400, 2006. [128] Topçu, A. Detection of Bitter Peptides Cause Bitterness in Kasar and White Cheese and The Investigation of Possible Effects of Storage Condition and Starter Microorganism on Bitterness, Ph.D. Thesis, Hacettepe University, Turkey, 2004. [129] Waagner Nielsen, E., North European varieties of cheese. Cheese, chemistry, physics and microbiology (eds: Fox, P. F., Chapman and Hall: London, 253, 1993. [130] Poveda, J. M.; Nieto-Arribas, P.; Seseña, S.; Chicón, R.; Castro, L.; Palop, L.; Cabezas, L., Volatile composition and improvement of the aroma of industrial Manchego cheese by using Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters, European Food Research and Technology, 238, 485-494, 2014. [131] Kumar, S.; Kanawjia, S. K.; Kumar, S., Incorporation of Lactobacillus adjuncts culture to improve the quality of Feta-type cheese made using buffalo milk, J Food Sci Technol, 52, 5021-9, 2015. [132] Sato, R.; Vieira, A.; Camisa, J.; Vianna, P.; De Rensis, C.; , Assessment of proteolysis and sensory characteristics of Prato cheese with adjunct culture, SEMINA-CIENCIAS AGRARIAS, 33, 3143-3151, 2012. [133] Michaelidou, A.; Katsiari, M. C.; Kondyli, E.; Voutsinas, L. P.; Alichanidis, E., Effect of a commercial adjunct culture on proteolysis in low-fat Feta-type cheese, International Dairy Journal, 13, 179-189, 2003. [134] Tornvall, U., Pinpointing oxidative modifications in proteins-recent advances in analytical methods, ANALYTICAL METHODS, 2, 1638-1650, 2010. [135] Ardö, Y., Evaluating proteolysis by analysing the N content of cheese fractions, Bulletin of the IDF, 4-9, 1999. [136] Lynch, C. M.; Muir, D. D.; Banks, J. M.; McSweeney, P. L. H.; Fox, P. F., Influence of adjunct cultures of Lactobacillus paracasei ssp. paracasei or Lactobacillus plantarum on Cheddar cheese ripening, J Dairy Sci, 82, 1618-1628, 1999. [137] Ong, L.; Henriksson, A.; Shah, N. P., Development of probiotic Cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid, International Dairy Journal, 16, 446-456, 2006. [138] Oneca, M.; Ortigosa, M.; Irigoyen, A.; Torre, P., Proteolytic activity of some Lactobacillus paracasei strains in a model ovine-milk curd system: Determination of free amino acids by RP-HPLC, Food Chemistry, 100, 1602-1610, 2007. [139] Hill, R. D.; Lahav, E.; Givol, D. A., Rennin sensitive bond in alpha-s1 B-casein Journal of Dairy Research, 41, 1974. [140] McSweeney, P. L.; Olson, N. F.; Fox, P. F.; Healy, A.; Hojrup, P., Proteolytic specificity of chymosin on bovine alpha s1-casein, J Dairy Res, 60, 401-12, 1993. 89 [141] Hayaloglu, A. A.; Guven, M.; Fox, P. F.; McSweeney, P. L., Influence of starters on chemical, biochemical, and sensory changes in Turkish White-brined cheese during ripening, J Dairy Sci, 88, 3460-74, 2005. [142] Singh, T. K.; Gripon, J. C.; Fox, P. F., Chromatographic analysis and identification of peptides in cheese, Bulletin of the IDF, 17-23, 1999. [143] Bulat, T. The Effect of Oxidation-Reduction Potential on Ripening of UF White Cheese. Ph.D. Thesis, Hacettepe, Turkey, 2017. [144] Lopez, C.; Maillard, M. B.; Briard-Bion, V.; Camier, B.; Hannon, J. A., Lipolysis during ripening of Emmental cheese considering organization of fat and preferential localization of bacteria, J Agric Food Chem, 54, 5855-67, 2006. [145] Kirmaci, H. A., Effect of wild strains used as starter cultures on free fatty acid profile of urfa cheese. In Polish Journal of Food and Nutrition Sciences, 2016; Vol. 66, p 303. [146] Mallatou, H.; Pappa, E.; Massouras, T., Changes in free fatty acids during ripening of Teleme cheese made with ewes’, goats’, cows’ or a mixture of ewes’ and goats’ milk, International Dairy Journal, 13, 211-219, 2003. [147] Delgado, F. J.; González-C.; Ladero, L.; Cava, R.; Ramírez, R., Free fatty acids and oxidative changes of a Spanish soft cheese (PDO ‘Torta del Casar’) during ripening, International Journal of Food Science & Technology, 44, 1721-1728, 2009. [148] Upreti, P.; McKay, L. L.; Metzger, L. E., Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: changes in residual sugars and water-soluble organic acids during ripening, J Dairy Sci, 89, 429-43, 2006. [149] Abd El-Salam, M. H.; Alichanidis, E., Cheese varieties ripened in brine. Cheese: chemistry, physics and microbiology, (eds: Fox, P. F.; McSweeney, P. L.; Cogan, T. M.; Guinee, T. P., Elsevier: Amsterdam, 227–249, 2004. [150] Smit, G.; Smit, B. A.; Engels, W. J., Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products, FEMS Microbiol Rev, 29, 591- 610, 2005. [151] Quere, J.-L. L., Cheese Flavor. Enyclopedia of Dairy Sciences Second (eds: Fuquay, J. w.; Fox, P. F.; McSweeney, P. L., Elsevier: 675-684, 2011. [152] Tavaria, F. K.; Silva Ferreira, A. C.; Malcata, F. X., Volatile free fatty acids as ripening indicators for Serra da Estrela cheese, J Dairy Sci, 87, 4064-72, 2004. [153] Liu, S. Q.; Holland, R.; Crow, V. L., Esters and their biosynthesis in fermented dairy products: a review, International Dairy Journal, 14, 923-945, 2004. [154] Engels, W. J. M.; Alting, A. C.; Visser, S., Isolation and comparative characterization of flavour components of different cheese types, Netherlands Milk and Dairy Journal, 48, 127-140, 1994. [155] Garde, S.; Ávila, M.; Fernández-García, E.; Medina, M.; Nuñez, M., Volatile compounds and aroma of Hispánico cheese manufactured using lacticin 481- producing Lactococcus lactis subsp. lactis INIA 639 as an adjunct culture, International Dairy Journal, 17, 717-726, 2007. [156] Molimard, P.; Spinnler, H. E., Review: Compounds involved in the flavor of surface mold-ripened Cheeses: Origins and properties, J Dairy Sci, 79, 169-184, 1996. [157] Soltani, M.; Sahingil, D.; Gokce, Y.; Hayaloglu, A. A., Changes in volatile composition and sensory properties of Iranian ultrafiltered white cheese as affected by blends of Rhizomucor miehei protease or camel chymosin, J Dairy Sci, 99, 7744-7754, 2016. [158] Lawrence, R. C.; Creamer, L. K.; Gilles, J., Texture development during Cheese ripening, J Dairy Sci, 70, 1748-1760, 1987. [159] Beal, P.; Mittal, G. S., Vibration and compression responses of Cheddar cheese at different fat content and Age, Milchwissenschaft, 55, 139-142, 2000. [160] Bachmann, H. P., Cheese analogues: a review, International Dairy Journal, 11, 505-515, 2001. [161] Gunasekaran, S.; Mehmet Ak, M., Cheese Rheology and Texture. CRC Press;2002. [162] Sahingil, D.; Hayaloglu, A. A.; Simsek, O.; Ozer, B., Changes in volatile composition, proteolysis and textural and sensory properties of white-brined cheese: effects of ripening temperature and adjunct culture, Dairy Science & Technology, 94, 603-623, 2014. [163] Dimitreli, G.; Thomareis, A. S., Texture evaluation of block-type processed cheese as a function of chemical composition and in relation to its apparent viscosity, Journal of Food Engineering, 79, 1364-1373, 2007.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/3465
dc.description.abstractIn this study, the effect of the commercial adjunct culture of CR-319 containing Lactococcus lactis subsp. Lactis and Lactococcus lactis subsp. cremoris on the microbiological, chemical, biochemical, textural and sensorial properties of the full-fat ultrafiltrated (UF) white cheese was investigated. UF cheese was manufactured by using normal starter culture (control cheese) or by the addition of adjunct culture of CR-319 in addition to starter culture (experimental cheese). Cheese samples were analysed during 120 days of ripening. It was found that addition of adjunct culture influenced all chemical composition, cheese yield, number of lactic acid bacteria, proteolysis, lipolysis, organic acid and sugar levels, volatile compositions, textural and sensorial characteristics of the cheese within different levels. Biochemical changes were more evident after the 60th day of ripening. Depending on high aminopeptidase activity of CR-319 commercial adjunct culture, secondary proteolysis was found at higher level, especially on the 120th days of ripening. However, primary proteolysis was also affected at experimental cheeses. Those results were supported by urea-PAGE and RP-HPLC. The total free fatty acid level was also affected by adjunct addition. But, its effect was limited (P > 0.05). In experimental cheeses, residual lactose level (~1.54%) was higher than the control cheese while residual galactose level (~0.15%) was lower. It has been found that the adjunct culture containing UF cheese samples had higher level of ketones such as diacetyl, 2,3 pentanedione, acetoin than the control cheeses. Sensorial properties of experimental cheeses were positively affected by adjunct culture and total acceptability was higher than the control cheeses. The use of adjunct culture slightly improved flavour intensity and decreased bitterness. Overall, CR-319 adjunct culture enhanced proteolysis, lipolysis, taste and aroma characteristics which are important for balanced flavour, whilst bitterness was reduced. It leads to partially much more creamy-like texture in UF cheeses. But, those effects were limited until the 60th or the 90th day of ripening.tr_TR
dc.description.sponsorshipResearch Projects Coordination Unit of Hacettepe University (Project Number: FHD-2016-11071).tr_TR
dc.description.tableofcontentsABSTRACT ........................................................................................................................... i ÖZET .................................................................................................................................... iii ACKNOWLEDGEMENT ..................................................................................................... v TABLE OF CONTENTS ..................................................................................................... vi TABLES ................................................................................................................................ x FIGURES ............................................................................................................................ xii SYMBOLS AND ABBREVIATIONS .............................................................................. xiv 1. INTRODUCTION .......................................................................................................... 1 2. LITERATURE REVIEW ............................................................................................... 4 2.1 Introduction ............................................................................................................. 4 2.2 Cheese Definition ................................................................................................... 5 2.3 Membrane Technology ........................................................................................... 5 2.3.1 Principles of membrane filtration .................................................................... 6 2.3.2 Utilisation of membrane technology in dairy industry .................................... 7 2.3.2.1 Microfiltration (MF) ................................................................................. 7 2.3.2.2 Nanofiltration (NF) .................................................................................. 8 2.3.2.3 Reverse Osmosis (RO) ............................................................................. 8 2.3.2.4 Ultrafiltration (UF) ................................................................................... 8 2.4 UF Cheese ............................................................................................................... 9 2.5 Enzymatic Coagulation Mechanism of Milk ........................................................ 10 2.6 Cheese Ripening ................................................................................................... 12 2.6.1 Metabolism of residual lactose and lactate .................................................... 12 2.6.2 Metabolism of citrate ..................................................................................... 13 2.6.3 Lipolysis ........................................................................................................ 14 2.6.4 Catabolism of free fatty acid ......................................................................... 16 2.6.5 Proteolysis ..................................................................................................... 17 2.6.5.1 Metabolism of free amino acid............................................................... 19 2.7 NSLAB and Adjunct Cultures .............................................................................. 20 2.8 Using Adjunct Culture in Cheese Manufacture .................................................... 22 2.8.1 Yeasts as adjunct cultures .............................................................................. 22 2.8.2 Moulds as adjunct cultures ............................................................................ 23 2.8.3 Lactic acid bacteria as adjunct cultures ......................................................... 24 2.9 Lactococcus Genus ............................................................................................... 24 2.9.1 Protein metabolism by lactococci .................................................................. 25 2.9.2 Carbohydrate metabolism by lactococci........................................................ 25 2.9.3 Lipid metabolisms by lactococci ................................................................... 25 3. MATERIAL AND METHOD ..................................................................................... 26 3.1 Material ................................................................................................................. 26 3.2 Method .................................................................................................................. 27 3.2.1 Microbiological analyses ............................................................................... 27 3.2.1.1 Lactic acid bacteria (LAB) count ........................................................... 27 3.2.2 Yield calculation ............................................................................................ 28 3.2.3 Physicochemical and chemical analyses in cheeses ...................................... 28 3.2.3.1 Dry matter analysis................................................................................. 28 3.2.3.2 pH determination .................................................................................... 28 3.2.3.3 Fat analysis ............................................................................................. 28 3.2.3.4 Salt determination .................................................................................. 28 3.2.3.5 Titratable acidity analysis....................................................................... 28 3.2.3.6 Protein analysis ...................................................................................... 28 3.2.4 Assessment of proteolysis ............................................................................. 29 3.2.4.1 Determination of water-soluble nitrogen (WSN) ................................... 29 3.2.4.2 Soluble nitrogen analysis in 12% Trichloroacetic acid (TCA) .............. 29 3.2.4.3 Determination of total free amino acid .................................................. 29 3.2.4.4 Examination of proteolysis in cheese samples by urea-PAGE (Polyacrylamide Gel Electrophoresis) method ......................................................... 30 3.2.4.5 Determination of proteolysis in cheese samples by RP-HPLC .............. 30 3.2.5 Free fatty acid extraction and analysis .......................................................... 31 3.2.6 Organic acid and sugar analysis .................................................................... 32 3.2.7 Volatile component analysis .......................................................................... 32 3.2.8 Texture profile analysis ................................................................................. 33 3.2.9 Sensory evaluations ....................................................................................... 34 3.2.10 Statistical evaluation of research results ........................................................ 34 4. RESULTS AND DISCUSSION .................................................................................. 35 4.1 Compositional Properties of UF Cheese Milk ...................................................... 35 4.2 Microbiological Results of UF White Cheese ...................................................... 35 4.3 Physicochemical and Chemical Analysis Results ................................................ 37 4.3.1.1 pH values of the cheese samples ............................................................ 38 4.3.1.2 Results of the titratable acidity of the cheese samples ........................... 39 4.3.1.3 Dry matter (DM) values of the cheese samples ..................................... 39 4.3.1.4 Fat in dry matter (%) values of the cheese samples ............................... 41 4.3.1.5 Salt in DM (%) values of the cheese samples ........................................ 41 4.3.1.6 Total protein (%) values of the cheese samples ..................................... 42 4.4 Yield (%) of the Cheese Samples ......................................................................... 43 4.5 Assessment of Proteolysis .................................................................................... 44 4.5.1 Analysis of water soluble nitrogen fractions (WSN)..................................... 44 4.5.2 Analysis of 12%trichloroacetic acid soluble nitrogen fractions (TCA-SN) .. 45 4.5.3 Analysis of total free amino acids ................................................................. 46 4.5.4 Results of Urea-PAGE electrophoresis analysis of the cheese samples ........ 47 4.5.5 Results of RP-HPLC analysis of the WSN fractions of the cheese samples . 52 4.6 Results of Free Fatty Acid Analysis in Cheese Samples ...................................... 56 4.7 Results of Organic Acid and Sugar Analysis in Cheese Samples ........................ 60 4.8 Results of Volatile Compounds Analysis in Cheese Samples .............................. 62 4.9 Results of Texture Analysis in Cheese Samples ................................................... 70 4.10 Results of Sensory Evaluation of the Cheese Samples ......................................... 74 5. CONCLUSION ............................................................................................................ 77 REFERENCES .................................................................................................................... 80 APPENDIX ......................................................................................................................... 91 CURRICULUM VITAE ..................................................................................................... 93tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/restrictedAccesstr_TR
dc.subjectUltrafiltrated white cheese, adjunct culture, bitterness, proteolysis, lipolysis, organic acid, volatile flavour compoundstr_TR
dc.titleUtilization of Commercial Adjunct Culture in The Manufacture of Ultrafiltrated White Cheese and its Effects on The Cheese Propertiestr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetBu çalışmada, Lactococcus lactis subsp. lactis ve Lactococcus lactis subsp. cremoris içeren CR-319 ticari kültürün tam yağlı ultrafiltre (UF) beyaz peynirin mikrobiyal, kimyasal, biyokimyasal, tekstürel ve duyusal özellikleri üzerine etkisi incelenmiştir. UF peynir starter kültür (kontrol peyniri) veya starter kültüre ilave olarak CR-319 ek kültürü kullanılarak üretilmiştir (deneme peyniri). Peynir örnekleri 120 günlük olgunlaşma süresince analiz edilmiştir. Ek kültür ilavesinin tüm kimyasal bileşimi, peynir verimini, laktik asit bakterilerinin sayısını, proteolizi, lipolizi, organik asit ve şeker miktarlarını, uçucu bileşenleri, tekstürel ve duyusal karakteristikleri değişik düzeylerde etkilediği bulunmuştur. Biyokimyasal değişiklikler olgunlaşmanın 60. günde belirgin hale gelmiştir. Ticari kültür CR-319’un yüksek aminopeptidaz aktivitesine bağlı olarak, özellikle olgunlaşmanın 120. gününde ikincil proteolizin yüksek seviyede olduğu tespit edilmiştir. Bununla beraber, deneysel peynirlerde birincil proteolizde etkilenmiştir. Bu sonuçlar üre-PAGE ve RP-HPLC ile de desteklenmiştir. Toplam serbest yağ asidi miktarı da ek kültür ilavesinden etkilenmiştir. Fakat bu etki sınırlı düzeyde olmuştur (P > 0.05). Deney peynirlerinde kalıntı laktoz seviyesi (~%1.54) kontrol peynirlerinden yüksek bulunurken kalıntı galaktoz seviyesi (~%0.15) kontrolden düşük bulunmuştur. Ek kültür içeren UF peynir örneklerinin diasetil, 2,3-pentadion, asetoin gibi ketonları daha yüksek düzeylerde içerdiği bulunmuştur. Deneme peynirlerinin duyusal özellikleri ek kültür ilavesi ile pozitif yönde etkilenmiştir ve bu peynirlerde toplam kabul edilebilirlik, kontrol peynirlerine göre daha yüksek düzeyde bulunmuştur. Ek kültür kullanımı aroma intensitesinde kısmi düzelme sağlarken acılaşmayı azaltmıştır. Sonuç olarak, CR-319 ek kültürü dengeli aroma için önemli olan proteolizi, lipolizi, tat ve koku karakteristiklerini iyileştirirken acılaşmayı azaltmıştır. UF peynirlerinde kısmen daha kremimsi bir yapı oluşturmuştur. Ancak, bu etkiler olgunlaşmanın 60. veya 90. gününe kadar sınırlı düzeydedir.tr_TR
dc.contributor.departmentGıda Mühendisliğitr_TR
dc.contributor.authorID10149407tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster