Özet
This study was carried out to determine some bioactive compounds and their antioxidant properties in whole wheat grains of selected on-farm conserved Turkish wheat genotypes (including 4 monococcum, 3 dicoccum, 4 durum, and 7 aestivum varieties). The chemical composition of whole wheat grains has been extensively studied, yet the literature on the bioactive compounds of Turkish local wheat genotypes is limited. For this purpose, 18 different wheat varieties including 4 different genotypes were supplied from TAGEM, Ankara. The total phenolics (including soluble-free, soluble-conjugated, and insoluble-bound phenolics), individual phenolic acid composition, total flavonoids, fatty acid composition, phytosterol profile, and steryl ferulate contents were determined in all whole wheat samples by UV/Vis Spectrophotometer, GC-FID, GC-MS, and HPLC-DAD. Overall, a comprehensive analysis of all results was performed using statistical tools such as Heatmap.
Sünter was selected as a representative wheat for advanced purification (TLC, PTLC, and MPLC) and characterization due to its high phenolic content in local wheat varieties. Metabolites such as phenolic acids, fatty acids, sterol/stanols, steryl ferulates, α-tocopherol, phospholipids, sugars, sugar alcohols, organic acids etc., were identified in different whole and isolated extracts of Sünter wheat with GC-MS, GC-FID, and HPLC-DAD, whereas characterization of purified compounds was achieved with the help of 1H and 13C NMR.
The results indicated that the dicoccum genotypes had the highest soluble-free and soluble-conjugated phenolics, whereas aestivum was rich in insoluble-bound, total phenolic, and flavonoid contents. The antioxidant capacity of monococcum and dicoccum wheat was slightly higher compared to the durum and aestivum genotypes.
The major fatty acids in wheat lipids were identified as linoleic, oleic, and palmitic acids. Phytosterol/stanols included campesterol, campestanol, stigmasterol, β-sitosterol, β-sitostanol, and Δ5-avenasterol, whereas campesteryl, campestanyl & sitosteryl, and sitostanyl ferulate were identified as steryl ferulates. The monococcum wheat varieties were considered healthier for human consumption due to the presence of low amounts of saturated fatty acids. Also, monococcum varieties were found rich in terms of total phytosterol and steryl ferulate contents as compared to other genotypes.
The analyses lead to the conclusion that local wheat genotypes, particularly dicoccum and aestivum, serve as valuable sources of both phenolic and antioxidant compounds. The local wheat varieties, such as Sünter, Zerun, AK-702, Köse 220/33, Spelt S. başak Siyez-4, and Karakılçık, contained higher amounts of beneficial bioactive compounds, e.g., phenolics, flavonoids, ferulic acid, unsaturated fatty acids, phytosterols, and steryl ferulates, making them a better choice over the commercial ones.
This study offered a quick approach to obtain the important information regarding bioactive compounds in local wheat varieties. Furthermore, it could also provide valuable insights into the selection of on-farm conserved wheat genotypes for future wheat breeding programs. This study is expected to make important contributions to the limited literature on the bioactive composition of local Turkish wheat genotypes.
Künye
[1] T. de Sousa, M. Ribeiro, C. Sabença, G. Igrejas, The 10,000-year success story of wheat!, Foods, 10 (2021) 2124.
[2] İ. Özberk, S. Atay, F. Altay, E. Cabi, H. Özkan, A. Atlı, Turkey's Wheat Atlas, WWF2016.
[3] B.T. Unal, Transfer of the wheat heritage of anatolia to future generations, in: Munir Ozturk, A. Gul (Eds.) Climate Change and Food Security with Emphasis on Wheat, Elsevier2020, pp. 283-291.
[4] L. Pascual, M. Ruiz, M. López-Fernández, H. Pérez-Peña, E. Benavente, J.F. Vázquez, C. Sansaloni, P. Giraldo, Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding, BMC genomics, 21 (2020) 1-17.
[5] M. Mefleh, P. Conte, C. Fadda, F. Giunta, A. Piga, G. Hassoun, R. Motzo, From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality, Journal of the Science of Food and Agriculture, 99 (2019) 2059-2067.
[6] A. Kan, Characterization of the fatty acid and mineral compositions of selected cereal cultivars from Turkey, Records of Natural Products, 9 (2015) 124.
[7] A. Salantur, M. Tekin, S. Bağcı, Türk buğday yerel çeşitleri ve bitki ıslahı, TÜRKTOB dergisi, (2017) 18-20.
[8] H. Erdem, Y.K. Tosun, M. Akkbik, O. Hazer, Determination of main plant sterols in Turkish bread wheat (Triticum aestivum L.) by GC-MS, Turkish Journal of Agriculture-Food Science and Technology, 5 (2017) 710-719.
[9] O. Merah, Z. Mouloungui, Tetraploid wheats: Valuable source of phytosterols and phytostanols, Agronomy, 9 (2019) 201.
[10] V. Narducci, E. Finotti, V. Galli, M. Carcea, Lipids and fatty acids in Italian durum wheat (Triticum durum Desf.) cultivars, Foods, 8 (2019) 223.
[11] A. Hidalgo, A. Brandolini, Nutritional properties of einkorn wheat (Triticum monococcum L.), Journal of the Science of Food and Agriculture, 94 (2014) 601-612.
[12] O.O. Onipe, A.I. Jideani, D. Beswa, Composition and functionality of wheat bran and its application in some cereal food products, International Journal of Food Science & Technology, 50 (2015) 2509-2518.
[13] P.R. Shewry, V. Piironen, A.-M. Lampi, M. Edelmann, S. Kariluoto, T. Nurmi, R. Fernandez-Orozco, C. Ravel, G. Charmet, A.A. Andersson, The HEALTHGRAIN wheat diversity screen: effects of genotype and environment on phytochemicals and dietary fiber components, Journal of Agricultural and Food Chemistry, 58 (2010) 9291-9298.
[14] J. Liu, L.L. Yu, Y. Wu, Bioactive components and health beneficial properties of whole wheat foods, Journal of agricultural and food chemistry, 68 (2020) 12904-12915.
[15] M. Lo Bianco, L. Siracusa, S. Dattilo, G. Venora, G. Ruberto, Phenolic fingerprint of sicilian modern cultivars and durum wheat landraces: a tool to assess biodiversity, Cereal Chemistry, 94 (2017) 1045-1051.
[16] Y. Zhang, L. Wang, Y. Yao, J. Yan, Z. He, Phenolic acid profiles of Chinese wheat cultivars, Journal of Cereal Science, 56 (2012) 629-635.
[17] A. Slama, A. Cherif, S. Boukhchina, Importance of new edible oil extracted from seeds of seven cereals species, Journal of Food Quality, 2021 (2021) 1-8.
[18] M.G. Melilli, V. Di Stefano, F. Sciacca, A. Pagliaro, R. Bognanni, S. Scandurra, N. Virzì, C. Gentile, M. Palumbo, Improvement of fatty acid profile in durum wheat breads supplemented with Portulaca oleracea L. quality traits of purslane-fortified bread, Foods, 9 (2020) 764.
[19] A. Berger, P.J. Jones, S.S. Abumweis, Plant sterols: factors affecting their efficacy and safety as functional food ingredients, Lipids in Health and Disease, 3 (2004) 1-19.
[20] L. Nyström, M. Mäkinen, A.-M. Lampi, V. Piironen, Antioxidant activity of steryl ferulate extracts from rye and wheat bran, Journal of Agricultural and Food Chemistry, 53 (2005) 2503-2510.
[21] G.S. Kumar, A. Krishna, Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil, Journal of Food Science and Technology, 52 (2015) 1145-1151.
[22] R. Rozenberg, N.L. Ruibal-Mendieta, G. Petitjean, P. Cani, D.L. Delacroix, N.M. Delzenne, M. Meurens, J. Quetin-Leclercq, J.-L. Habib-Jiwan, Phytosterol analysis and characterization in spelt (Triticum aestivum ssp. spelta L.) and wheat (T. aestivum L.) lipids by LC/APCI-MS, Journal of Cereal Science, 38 (2003) 189-197.
[23] F. Özberk, I. Özberk, Wheat Landraces in Mesopotamia, Wheat Landraces, (2021) 13-34.
[24] Ö. Özbek, Characterisation of Genetic Diversity in Wheat Landraces, Wheat Landraces, (2021) 59-81.
[25] S. Rahman, S. Islam, E. Nevo, M.A.U. Saieed, Q. Liu, R.K. Varshney, W. Ma, Characterizing agronomic and shoot morphological diversity across 263 Wild Emmer Wheat Accessions, Agriculture, 13 (2023) 759.
[26] S. Abbo, S. Lev-Yadun, M. Heun, A. Gopher, On the ‘lost’crops of the neolithic Near East, Journal of experimental botany, 64 (2013) 815-822.
[27] M.S. Gurjar, H. Mohan M, J. Singh, M.S. Saharan, R. Aggarwal, Tilletia indica: biology, variability, detection, genomics and future perspective, Indian Phytopathology, 74 (2021) 21-31.
[28] T. Sakamura, Kurze Mitteilung ueber die Chromosomenzahlen und die Verwandtschaftsverhältnisse der Triticum-arten, Shokubutsugaku Zasshi, 32 (1918) en150-en153.
[29] N. Chantret, J. Salse, F. Sabot, S. Rahman, A. Bellec, B. Laubin, I. Dubois, C. Dossat, P. Sourdille, P. Joudrier, Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops), The Plant Cell, 17 (2005) 1033-1045.
[30] M. Haas, M. Schreiber, M. Mascher, Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions, Journal of integrative plant biology, 61 (2019) 204-225.
[31] S. Minaei, S.A. Mohammadi, A. Sabouri, A.R. Dadras, High genetic diversity in Aegilops tauschii Coss. accessions from North Iran as revealed by IRAP and REMAP markers, Journal of Genetic Engineering and Biotechnology, 20 (2022) 1-12.
[32] P. Giraldo, E. Benavente, F. Manzano-Agugliaro, E. Gimenez, Worldwide research trends on wheat and barley: A bibliometric comparative analysis, Agronomy, 9 (2019) 352.
[33] FAO, Crop Prospects and Food Situation – Quarterly Global Report No. 2, July 2023, Rome, 2023.
[34] OECD, Food, A.O.o.t.U. Nations, OECD-FAO Agricultural Outlook 2022-2031, 2022.
[35] TURKSTAT, Crop Production Statistics, 2022.
[36] O. Erenstein, M. Jaleta, K.A. Mottaleb, K. Sonder, J. Donovan, H.-J. Braun, Global trends in wheat production, consumption and trade, Wheat improvement: food security in a changing climate, Springer International Publishing Cham2022, pp. 47-66.
[37] TURKSTAT, Crop Products Balance Sheets, 2022.
[38] B. Karkı, B. Kadakoglu, D. Merve Muruvvet, Alamettin, Development of the wheat flour industry in Türkiye and analysis of the international competitiveness, Development 22 (2022).
[39] USDA, Middle East: Iran, Iraq, Israel, Syria, Turkey and Yemen - Crop Production Maps, 2020.
[40] H.D. Sapirstein, Bioactive Compounds in Wheat Bran, in: C. Wrigley, H. Corke, K. Seetharaman, J. Faubion (Eds.) Encyclopedia of Food Grains (Second Edition), Academic Press, Oxford, 2016, pp. 268-276.
[41] K. Stuper-Szablewska, M. Buśko, T. Góral, J. Perkowski, The fatty acid profile in different wheat cultivars depending on the level of contamination with microscopic fungi, Food chemistry, 153 (2014) 216-223.
[42] Y. Zheng, Z. Wang, Protein accumulation in aleurone cells, sub-aleurone cells and the center starch endosperm of cereals, Plant Cell Reports, 33 (2014) 1607-1615.
[43] F. Brouns, S. Geisslitz, C. Guzman, T.M. Ikeda, A. Arzani, G. Latella, S. Simsek, M. Colomba, A. Gregorini, V. Zevallos, Do ancient wheats contain less gluten than modern bread wheat, in favour of better health?, Nutrition Bulletin, 47 (2022) 157-167.
[44] E. Fahy, D. Cotter, M. Sud, S. Subramaniam, Lipid classification, structures and tools, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1811 (2011) 637-647.
[45] D.L. Luthria, Y. Lu, K.M. John, Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties, Journal of functional foods, 18 (2015) 910-925.
[46] Y. Zhu, P. Wang, W. Sha, S. Sang, Urinary biomarkers of whole grain wheat intake identified by non-targeted and targeted metabolomics approaches, Scientific reports, 6 (2016) 36278.
[47] T. Nurmi, A.-M. Lampi, L. Nyström, Y. Hemery, X. Rouau, V. Piironen, Distribution and composition of phytosterols and steryl ferulates in wheat grain and bran fractions, Journal of Cereal Science, 56 (2012) 379-388.
[48] T. Nurmi, A.-M. Lampi, L. Nystrom, V. Piironen, Effects of environment and genotype on phytosterols in wheat in the HEALTHGRAIN diversity screen, Journal of agricultural and food chemistry, 58 (2010) 9314-9323.
[49] L. Nyström, A. Paasonen, A.-M. Lampi, V. Piironen, Total plant sterols, steryl ferulates and steryl glycosides in milling fractions of wheat and rye, Journal of Cereal Science, 45 (2007) 106-115.
[50] L. Li, P.R. Shewry, J.L. Ward, Phenolic acids in wheat varieties in the HEALTHGRAIN diversity screen, Journal of Agricultural and Food Chemistry, 56 (2008) 9732-9739.
[51] F.P. Karakas, C.N. Keskin, F. Agil, N. Zencirci, Phenolic composition and antioxidant potential in Turkish einkorn, emmer, durum, and bread wheat grain and grass, South African Journal of Botany, 149 (2022) 407-415.
[52] P.R. Shewry, S. Hey, Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components?, Journal of Cereal Science, 65 (2015) 236-243.
[53] F. Pehlivan Karakas, C.N. Keskin, F. Agil, N. Zencirci, Profiles of vitamin B and E in wheat grass and grain of einkorn (Triticum monococcum spp. monococcum), emmer (Triticum dicoccum ssp. dicoccum Schrank.), durum (Triticum durum Desf.), and bread wheat (Triticum aestivum L.) cultivars by LC-ESI-MS/MS analysis, Journal of Cereal Science, 98 (2021) 103177.
[54] M. Dinu, A. Whittaker, G. Pagliai, S. Benedettelli, F. Sofi, Ancient wheat species and human health: Biochemical and clinical implications, The Journal of nutritional biochemistry, 52 (2018) 1-9.
[55] J.U. Ziegler, S. Wahl, T. Würschum, C.F.H. Longin, R. Carle, R.M. Schweiggert, Lutein and lutein esters in whole grain flours made from 75 genotypes of 5 triticum species grown at multiple sites, Journal of Agricultural and Food Chemistry, 63 (2015) 5061-5071.
[56] T. Nurmi, L. Nystrom, M. Edelmann, A.-M. Lampi, V. Piironen, Phytosterols in wheat genotypes in the HEALTHGRAIN diversity screen, Journal of Agricultural and Food Chemistry, 56 (2008) 9710-9715.
[57] J.U. Ziegler, R.M. Schweiggert, T. Würschum, C.F.H. Longin, R. Carle, Lipophilic antioxidants in wheat (Triticum spp.): A target for breeding new varieties for future functional cereal products, Journal of functional foods, 20 (2016) 594-605.
[58] L. Fan, W.J. Shi, W.R. Hu, X.Y. Hao, D.M. Wang, H. Yuan, H.Y. Yan, Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall‐linked phenolics in cotton fibers, Journal of Integrative Plant Biology, 51 (2009) 626-637.
[59] C.M. Liyana-Pathirana, F. Shahidi, Importance of insoluble-bound phenolics to antioxidant properties of wheat, Journal of agricultural and food chemistry, 54 (2006) 1256-1264.
[60] O.R. Alara, N.H. Abdurahman, C.I. Ukaegbu, Extraction of phenolic compounds: A review, Current Research in Food Science, 4 (2021) 200-214.
[61] V. Gökmen, A. Serpen, V. Fogliano, Direct measurement of the total antioxidant capacity of foods: the ‘QUENCHER’approach, Trends in Food Science & Technology, 20 (2009) 278-288.
[62] M.C.B. Santos, L.R. da Silva Lima, F.R. Nascimento, T.P. do Nascimento, L.C. Cameron, M.S.L. Ferreira, Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development, Food Research International, 124 (2019) 118-128.
[63] A. Bento-Silva, V.M. Koistinen, P. Mena, M.R. Bronze, K. Hanhineva, S. Sahlstrøm, V. Kitrytė, S. Moco, A.-M. Aura, Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability?, European journal of nutrition, 59 (2020) 1275-1293.
[64] D. Ma, C. Wang, J. Feng, B. Xu, Wheat grain phenolics: a review on composition, bioactivity, and influencing factors, Journal of the Science of Food and Agriculture, 101 (2021) 6167-6185.
[65] V.P. Shamanin, Z.H. Tekin-Cakmak, E.I. Gordeeva, S. Karasu, I. Pototskaya, A.S. Chursin, V.E. Pozherukova, G. Ozulku, A.I. Morgounov, O. Sagdic, Antioxidant capacity and profiles of phenolic acids in various genotypes of purple wheat, Foods, 11 (2022) 2515.
[66] H. Guven, A. Arici, O. Simsek, Flavonoids in our foods: a short review, Journal of Basic and Clinical Health Sciences, 3 (2019) 96-106.
[67] A. Zeb, Concept, mechanism, and applications of phenolic antioxidants in foods, Journal of Food Biochemistry, 44 (2020) e13394.
[68] H. Akman, Z.S. Yeşildağ, G. Zengin, Evaluating Total Phenolic Content, Antioxidant Activity, High Molecular Weight Glutenin Subunits (HMW-GS), and Grain Yield Parameters of Cultivated Wheat and Hybrids, Gesunde Pflanzen, (2023) 1-11.
[69] S. Pavlova, D. Albegova, Y.S. Vorob’eva, O. Laptev, I. Kozlov, Flavonoids as potential immunosuppressants affecting intracellular signaling pathways (a review), Pharmaceutical Chemistry Journal, 49 (2016) 645-652.
[70] P. Van Hung, T. Maeda, K. Miyatake, N. Morita, Total phenolic compounds and antioxidant capacity of wheat graded flours by polishing method, Food Research International, 42 (2009) 185-190.
[71] L.R. Brewer, J. Kubola, S. Siriamornpun, T.J. Herald, Y.-C. Shi, Wheat bran particle size influence on phytochemical extractability and antioxidant properties, Food chemistry, 152 (2014) 483-490.
[72] E. Leoncini, C. Prata, M. Malaguti, I. Marotti, A. Segura-Carretero, P. Catizone, G. Dinelli, S. Hrelia, Phytochemical profile and nutraceutical value of old and modern common wheat cultivars, (2012).
[73] K.K. Adom, M.E. Sorrells, R.H. Liu, Phytochemicals and antioxidant activity of milled fractions of different wheat varieties, Journal of agricultural and food chemistry, 53 (2005) 2297-2306.
[74] E. Giambanelli, F. Ferioli, L.F. D’Antuono, Retention of alkylresorcinols, antioxidant activity and fatty acids following traditional hulled wheat processing, Journal of Cereal Science, 79 (2018) 98-105.
[75] G.L. Russo, Dietary n− 6 and n− 3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention, Biochemical pharmacology, 77 (2009) 937-946.
[76] C. Armanino, R. De Acutis, M.R. Festa, Wheat lipids to discriminate species, varieties, geographical origins and crop years, Analytica Chimica Acta, 454 (2002) 315-326.
[77] R.G. Upchurch, Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress, Biotechnology letters, 30 (2008) 967-977.
[78] L. Nejadsadeghi, R. Maali-Amiri, H. Zeinali, S. Ramezanpour, B. Sadeghzade, Membrane fatty acid compositions and cold-induced responses in tetraploid and hexaploid wheats, Molecular biology reports, 42 (2015) 363-372.
[79] T. Woyengo, V. Ramprasath, P. Jones, Anticancer effects of phytosterols, European journal of clinical nutrition, 63 (2009) 813-820.
[80] N.T. Dunford, S. Irmak, R. Jonnala, Effect of the solvent type and temperature on phytosterol contents and compositions of wheat straw, bran, and germ extracts, Journal of agricultural and food chemistry, 57 (2009) 10608-10611.
[81] W. Tian, Y. Zheng, W. Wang, D. Wang, M. Tilley, G. Zhang, Z. He, Y. Li, A comprehensive review of wheat phytochemicals: From farm to fork and beyond, Comprehensive Reviews in Food Science and Food Safety, 21 (2022) 2274-2308.
[82] I. Rajhi, B. Baccouri, H. Mhadhbi, Phytosterols in wheat: Composition, contents and role in human health, Open Access J. Biol. Sci. Res., 5 (2020) 1-5.
[83] R.E. Ostlund Jr, Phytosterols, cholesterol absorption and healthy diets, Lipids, 42 (2007) 41-45.
[84] J. Ateş, S. Velioğlu, Kolesterole karşı yeni silahımız: bitki sterolleri, Gıda mühendisliği dergisi, 20 (2005) 55-58.
[85] E. Mandak, L. Nyström, Steryl ferulates, bioactive compounds in cereal grains, Lipid Technology, 24 (2012) 80-82.
[86] W. Tsuzuki, H. Mogushi, S. Kawahara, E. Kotake-Nara, S. Komba, Y. Kanai, S. Yamada, A. Horigane, The content and distribution of steryl ferulates in wheat produced in Japan, Bioscience, Biotechnology, and Biochemistry, 81 (2017) 573-580.
[87] P. Garcia-Salas, A. Morales-Soto, A. Segura-Carretero, A. Fernández-Gutiérrez, Phenolic-compound-extraction systems for fruit and vegetable samples, Molecules, 15 (2010) 8813-8826.
[88] A.A. Andersson, L. Dimberg, P. Åman, R. Landberg, Recent findings on certain bioactive components in whole grain wheat and rye, Journal of Cereal Science, 59 (2014) 294-311.
[89] I.A. Saleh, M. Vinatoru, T.J. Mason, N. Abdel-Azim, E. Aboutabl, F. Hammouda, A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L.(artichoke) leaves, Ultrasonics Sonochemistry, 31 (2016) 330-336.
[90] A. Khoddami, M.A. Wilkes, T.H. Roberts, Techniques for analysis of plant phenolic compounds, Molecules, 18 (2013) 2328-2375.
[91] Z. Berk, Chapter 11 – Extraction, 2009.
[92] S. Kühn, F. Temelli, Recovery of bioactive compounds from cranberry pomace using ternary mixtures of CO2+ ethanol+ water, The Journal of Supercritical Fluids, 130 (2017) 147-155.
[93] S.F. Hammad, I.A. Abdallah, A. Bedair, F.R. Mansour, Homogeneous liquid–liquid extraction as an alternative sample preparation technique for biomedical analysis, Journal of separation science, 45 (2022) 185-209.
[94] C. Breil, M. Abert Vian, T. Zemb, W. Kunz, F. Chemat, “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents, International journal of molecular sciences, 18 (2017) 708.
[95] K. Ameer, H.M. Shahbaz, J.H. Kwon, Green extraction methods for polyphenols from plant matrices and their byproducts: A review, Comprehensive Reviews in Food Science and Food Safety, 16 (2017) 295-315.
[96] C.S. Dzah, Y. Duan, H. Zhang, N.A.S. Boateng, H. Ma, Latest developments in polyphenol recovery and purification from plant by-products: A review, Trends in Food Science & Technology, 99 (2020) 375-388.
[97] M.E. Hefni, L.S. Amann, C.M. Witthöft, A HPLC-UV method for the quantification of phenolic acids in cereals, Food Analytical Methods, 12 (2019) 2802-2812.
[98] G.B. Rasera, A.C. de Camargo, R.J.S. de Castro, Bioaccessibility of phenolic compounds using the standardized INFOGEST protocol: A narrative review, Comprehensive Reviews in Food Science and Food Safety, 22 (2023) 260-286.
[99] J. Moore, Z. Hao, K. Zhou, M. Luther, J. Costa, L. Yu, Carotenoid, tocopherol, phenolic acid, and antioxidant properties of Maryland-grown soft wheat, Journal of Agricultural and Food Chemistry, 53 (2005) 6649-6657.
[100] N.T. Bui, T.-L.T. Pham, K.T. Nguyen, P.H. Le, K.-H. Kim, Effect of extraction solvent on total phenol, flavonoid content, and antioxidant activity of Avicennia officinalis, Res. Appl. Chem, 12 (2021) 2678-2690.
[101] M.A. Islam, B.-G. Jeong, W.L. Kerr, J. Chun, Validation of phytosterol analysis by alkaline hydrolysis and trimethylsilyl derivatization coupled with gas chromatography for rice products, Journal of Cereal Science, 101 (2021) 103305.
[102] D. Saraiva, R. Semedo, M. da Conceição Castilho, J.M. Silva, F. Ramos, Selection of the derivatization reagent—the case of human blood cholesterol, its precursors and phytosterols GC–MS analyses, Journal of Chromatography B, 879 (2011) 3806-3811.
[103] D. Donno, M.G. Mellano, G. Gamba, I. Riondato, G.L. Beccaro, Analytical strategies for fingerprinting of antioxidants, nutritional substances, and bioactive compounds in foodstuffs based on high performance liquid chromatography–mass spectrometry: An overview, Foods, 9 (2020) 1734.
[104] B. Fuchs, R. Süß, K. Teuber, M. Eibisch, J. Schiller, Lipid analysis by thin-layer chromatography—a review of the current state, Journal of chromatography A, 1218 (2011) 2754-2774.
[105] L. Dinan, J. Harmatha, R. Lafont, Chromatographic procedures for the isolation of plant steroids, Journal of chromatography A, 935 (2001) 105-123.
[106] J.-L. Wolfender, G. Marti, E. Ferreira Queiroz, Advances in techniques for profiling crude extracts and for the rapid identificationof natural products: Dereplication, quality control and metabolomics, Current organic chemistry, 14 (2010) 1808-1832.
[107] G. Dinelli, A.S. Carretero, R. Di Silvestro, I. Marotti, S. Fu, S. Benedettelli, L. Ghiselli, A.F. Gutiérrez, Determination of phenolic compounds in modern and old varieties of durum wheat using liquid chromatography coupled with time-of-flight mass spectrometry, Journal of Chromatography A, 1216 (2009) 7229-7240.
[108] A. Moheb, R.K. Ibrahim, R. Roy, F. Sarhan, Changes in wheat leaf phenolome in response to cold acclimation, Phytochemistry, 72 (2011) 2294-2307.
[109] S. Liu, H. Ruan, A highly sensitive quantification of phytosterols through an inexpensive derivatization, Chemistry and physics of lipids, 166 (2013) 18-25.
[110] P. Hakala, A.-M. Lampi, V. Ollilainen, U. Werner, M. Murkovic, K. Wähälä, S. Karkola, V. Piironen, Steryl phenolic acid esters in cereals and their milling fractions, Journal of Agricultural and Food Chemistry, 50 (2002) 5300-5307.
[111] I. Ueta, Gas chromatographic determination of volatile compounds, Analytical Sciences, 38 (2022) 737-738.
[112] B. Gruber, F. David, P. Sandra, Capillary gas chromatography-mass spectrometry: Current trends and perspectives, TrAC Trends in Analytical Chemistry, 124 (2020) 115475.
[113] B. Nemzer, F. Al-Taher, Analysis of Fatty Acid Composition in Sprouted Grains, Foods, 12 (2023) 1853.
[114] K.E. Young, S.M. Quinn, S.J. Trumble, Comparing gas chromatographic techniques used in fatty acid profiling of northern fur seals (Callorhinusursinus) and steller sea lions (Eumetopiasjubatus) from Lovushki Island Complex, Russia, International Journal of Applied, 2 (2012).
[115] K. Pastor, M. Ilić, D. Vujić, D. Jovanović, M. Ačanski, Characterization of fatty acids in cereals and oilseeds from the Republic of Serbia by gas chromatography–mass spectrometry (GC/MS) with chemometrics, Analytical Letters, 53 (2020) 1177-1189.
[116] E.A. Mahrous, M.A. Farag, Two dimensional NMR spectroscopic approaches for exploring plant metabolome: A review, Journal of advanced research, 6 (2015) 3-15.
[117] Anonymous, NMR 101, 2023.
[118] R. Faller, UCD Biophysics 241: Membrane Biology, UCD: Physics & Biophysics, (2020).
[119] U. Holzgrabe, Quantitative NMR spectroscopy in pharmaceutical applications, Progress in Nuclear Magnetic Resonance Spectroscopy, 57 (2010) 229-240.
[120] A.-H.M. Emwas, The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research, Metabonomics: Methods and protocols, (2015) 161-193.
[121] K. Tyśkiewicz, M. Konkol, R. Kowalski, E. Rój, K. Warmiński, M. Krzyżaniak, Ł. Gil, M.J. Stolarski, Characterization of bioactive compounds in the biomass of black locust, poplar and willow, Trees, 33 (2019) 1235-1263.
[122] S.S. Hong, H.-J. Suh, J.S. Oh, Phenolic chemical constituents of the stem barks of Robinia pseudoacacia, Chemistry of Natural Compounds, 53 (2017) 359-361.
[123] X.-F. Sun, Sun, P. Fowler, M.S. Baird, Extraction and characterization of original lignin and hemicelluloses from wheat straw, Journal of Agricultural and Food Chemistry, 53 (2005) 860-870.
[124] A. Barison, C.W. Pereira da Silva, F.R. Campos, F. Simonelli, C.A. Lenz, A.G. Ferreira, A simple methodology for the determination of fatty acid composition in edible oils through 1H NMR spectroscopy, Magnetic resonance in chemistry, 48 (2010) 642-650.
[125] Z. Haida, M. Hakiman, A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities, Food science & nutrition, 7 (2019) 1555-1563.
[126] J.-K. Moon, T. Shibamoto, Antioxidant assays for plant and food components, Journal of agricultural and food chemistry, 57 (2009) 1655-1666.
[127] K.M. Schaich, X. Tian, J. Xie, Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays, Journal of functional foods, 14 (2015) 111-125.
[128] Y. Liu, M.G. Nair, An efficient and economical MTT assay for determining the antioxidant activity of plant natural product extracts and pure compounds, Journal of natural products, 73 (2010) 1193-1195.
[129] K. Zhou, J.J. Laux, L. Yu, Comparison of Swiss red wheat grain and fractions for their antioxidant properties, Journal of Agricultural and Food Chemistry, 52 (2004) 1118-1123.
[130] H. Heo, H. Lee, J. Park, K.-H. Kim, H.-S. Jeong, J. Lee, Antioxidant and Cytoprotective Capacities of Various Wheat (Triticum aestivum L.) Cultivars in Korea, Foods, 11 (2022) 2338.
[131] S. Narwal, V. Thakur, S. Sheoran, S. Dahiya, S. Jaswal, R.K. Gupta, Antioxidant activity and phenolic content of the Indian wheat varieties, Journal of plant biochemistry and biotechnology, 23 (2014) 11-17.
[132] D. Martini, F. Taddei, R. Ciccoritti, M. Pasquini, I. Nicoletti, D. Corradini, M.G. D'Egidio, Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area, Journal of Cereal Science, 65 (2015) 175-185.
[133] A. Ladhari, G. Corrado, Y. Rouphael, F. Carella, G.R. Nappo, C. Di Marino, A. De Marco, D. Palatucci, Chemical, functional, and technological features of grains, brans, and semolina from purple and red durum wheat landraces, Foods, 11 (2022) 1545.
[134] Anonymous, General Directorate of Meteorology, (2023).
[135] AACC, Approved Methods of the AACC, American Association of Cereal Chemists., St. Paul, MN2000.
[136] M. Khodarahmi, H. Soughi, K. Shahbazi, J. Jafarby, M.S. Khavarinejad, Trends in important agronomic traits, grain yield and its components in bread wheat cultivars released in northern warm and humid climate of Iran, 1968–2018, Cereal Research Communications, (2023) 1-12.
[137] A. Serpen, V. Gökmen, A. Karagöz, H. Köksel, Phytochemical quantification and total antioxidant capacities of emmer (Triticum dicoccon Schrank) and einkorn (Triticum monococcum L.) wheat landraces, Journal of Agricultural and Food Chemistry, 56 (2008) 7285-7292.
[138] M.N. Irakli, V.F. Samanidou, C.G. Biliaderis, I.N. Papadoyannis, Development and validation of an HPLC-method for determination of free and bound phenolic acids in cereals after solid-phase extraction, Food Chemistry, 134 (2012) 1624-1632.
[139] A. Serpen, V. Gökmen, V. Fogliano, Total antioxidant capacities of raw and cooked meats, Meat Science, 90 (2012) 60-65.
[140] V. Mulabagal, G.A. Lang, D.L. DeWitt, S.S. Dalavoy, M.G. Nair, Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries, Journal of Agricultural and Food Chemistry, 57 (2009) 1239-1246.
[141] S.K. Byeon, J.Y. Lee, M.H. Moon, Optimized extraction of phospholipids and lysophospholipids for nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry, Analyst, 137 (2012) 451-458.
[142] A.A. Dissanayake, J.A. Mmongoyo, M.G. Nair, Zanzibar yam (Dioscorea sansibarensis Pax) isolates exhibit cyclooxygenase enzyme and lipid peroxidation inhibitory activities, Natural Product Research, 36 (2021) 4719-4723.
[143] F. David, P. Sandra, P.L. Wylie, Improving the analysis of fatty acid methyl esters using retention time locked methods and retention time databases, Agilent Technologies-Application. Agilent Technologies, Palo Alto, CA, (2002).
[144] A. Jekel, H. Vaessen, R. Schothorst, Capillary gas-chromatographic method for determining non-derivatized sterols–some results for duplicate 24 h diet samples collected in 1994, Fresenius' Journal of Analytical Chemistry, 360 (1998) 595-600.
[145] J. Moser, Gas chromatographic analysis of plant sterols, American Oil Chemists' Societ, USA, 2011.
[146] P. Chandra Dutta, L.Å. Appelqvist, Saturated sterols (stanols) in unhydrogenated and hydrogenated edible vegetable oils and in cereal lipids, Journal of the Science of Food and Agriculture, 71 (1996) 383-391.
[147] K. Ghafoor, M.M. Özcan, F. AL‐Juhaımı, E.E. Babıker, Z.I. Sarker, I.A.M. Ahmed, M.A. Ahmed, Nutritional composition, extraction, and utilization of wheat germ oil: A review, European Journal of Lipid Science and Technology, 119 (2017) 1600160.
[148] L. Lei, J. Chen, Y. Liu, L. Wang, G. Zhao, Z.-Y. Chen, Dietary wheat bran oil is equally as effective as rice bran oil in reducing plasma cholesterol, Journal of agricultural and food chemistry, 66 (2018) 2765-2774.
[149] P. Khuwijitjaru, T. Yuenyong, R. Pongsawatmanit, S. Adachi, Degradation kinetics of gamma-oryzanol in antioxidant-stripped rice bran oil during thermal oxidation, Journal of Oleo Science, 58 (2009) 491-497.
[150] C.-R. Zhang, A.A. Dissanayake, K. Kevseroğlu, M.G. Nair, Evaluation of coriander spice as a functional food by using in vitro bioassays, Food chemistry, 167 (2015) 24-29.
[151] L. Zhang, Y. Yu, R. Yu, Analysis of metabolites and metabolic pathways in three maize (Zea mays L.) varieties from the same origin using GC–MS, Scientific Reports, 10 (2020) 17990.
[152] F. Khan, D. Fuentes, R. Threthowan, F. Mohammad, M. Ahmad, Comparative metabolite profiling of two wheat genotypes as affected by nitrogen stress at seedling stage, JAPS: Journal of Animal & Plant Sciences, 29 (2019).
[153] Y. Liu, D. Singh, M.G. Nair, Pods of Khejri (Prosopis cineraria) consumed as a vegetable showed functional food properties, Journal of Functional Foods, 4 (2012) 116-121.
[154] D. Granato, V.M. de Araújo Calado, B. Jarvis, Observations on the use of statistical methods in food science and technology, Food Research International, 55 (2014) 137-149.
[155] K. Wang, B.X. Fu, Inter-relationships between test weight, thousand kernel weight, kernel size distribution and their effects on durum wheat milling, semolina composition and pasta processing quality, Foods, 9 (2020) 1308.
[156] D. Hatcher, J. Kruger, Simple phenolic acids in flours prepared from Canadian wheat: relationship to ash content, color, and polyphenol oxidase activity, Cereal Chemistry, 74 (1997) 337-343.
[157] G. Bonafaccia, V. Galli, R. Francisci, V. Mair, V. Skrabanja, I. Kreft, Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread, Food Chemistry, 68 (2000) 437-441.
[158] B. Sezer, G. Bilge, T. Sanal, H. Koksel, I.H. Boyaci, A novel method for ash analysis in wheat milling fractions by using laser-induced breakdown spectroscopy, Journal of Cereal Science, 78 (2017) 33-38.
[159] D.B. Ficco, R. Beleggia, I. Pecorella, V. Giovanniello, A.S. Frenda, P.D. Vita, Relationship between seed morphological traits and ash and mineral distribution along the kernel using debranning in durum wheats from different geographic sites, Foods, 9 (2020) 1523.
[160] J. Lachman, D. Miholová, V. Pivec, K. Jírů, D. Janovská, Content of phenolic antioxidants and selenium in grain of einkorn (Triticum monococcum), emmer (Triticum dicoccum) and spring wheat (Triticum aestivum) varieties, Plant, Soil and Environment, 57 (2011) 235-243.
[161] K.K. Adom, R.H. Liu, Antioxidant activity of grains, Journal of agricultural and food chemistry, 50 (2002) 6182-6187.
[162] B. Laddomada, A. Blanco, G. Mita, L. D’Amico, R.P. Singh, K. Ammar, J. Crossa, C. Guzmán, Drought and heat stress impacts on phenolic acids accumulation in durum wheat cultivars, Foods, 10 (2021) 2142.
[163] M. Shamloo, E.A. Babawale, A. Furtado, R.J. Henry, P.K. Eck, P.J. Jones, Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments, Sci Rep, 7 (2017) 1-13.
[164] Ö. Menteş Yılmaz, E. Bakkalbaşı, R. Ercan, Phenolic acid contents and antioxidant activities of wheat milling fractions and the effect of flour extraction rate on antioxidant activity of bread, Journal of Food Biochemistry, 42 (2018) e12637.
[165] A. YİĞİT, O. Erekul, Antioxidant Activity and Essential Amino acid Content of Bread Wheat (Triticum aestivum L.) Varieties, Journal of Agricultural Sciences, 29 (2023) 130-141.
[166] D. Giordano, M. Locatelli, F. Travaglia, M. Bordiga, A. Reyneri, J.D. Coïsson, M. Blandino, Bioactive compound and antioxidant activity distribution in roller-milled and pearled fractions of conventional and pigmented wheat varieties, Food Chemistry, 233 (2017) 483-491.
[167] A. Sharma, M. Yadav, A. Tiwari, U. Ali, M. Krishania, M. Bala, D. Mridula, P. Sharma, G. Goudar, J.K. Roy, A comparative study of colored wheat lines across laboratories for validation of their phytochemicals and antioxidant activity, Journal of Cereal Science, 112 (2023) 103719.
[168] W. Tian, Y. Li, Phenolic acid composition and antioxidant activity of hard red winter wheat varieties, Journal of Food Biochemistry, 42 (2018) e12682.
[169] E. Giambanelli, F. Ferioli, B. Koçaoglu, M. Jorjadze, I. Alexieva, N. Darbinyan, L.F. D'Antuono, A comparative study of bioactive compounds in primitive wheat populations from Italy, Turkey, Georgia, Bulgaria and Armenia, Journal of the Science of Food and Agriculture, 93 (2013) 3490-3501.
[170] E. Giambanelli, F. Ferioli, L.F. D’Antuono, Assessing the effect of traditional hulled wheat processing on bioactive compounds retention, Journal of Cereal Science, 72 (2016) 60-68.
[171] C.M. Golea, S.-G. Stroe, A.-M. Gâtlan, G.G. Codină, Physicochemical Characteristics and Microstructure of Ancient and Common Wheat Grains Cultivated in Romania, Plants, 12 (2023) 2138.
[172] C.T. Matea, C. Bele, Quantification of Tocopherol and Fatty Acid Content in Selected Romanian Cereal Using HPLC-FL and GC-FID, Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture, 65 (2008).
[173] E. Suchowilska, M. Wiwart, Z. Borejszo, D. Packa, W. Kandler, R. Krska, Discriminant analysis of selected yield components and fatty acid composition of chosen Triticum monococcum, Triticum dicoccum and Triticum spelta accessions, Journal of Cereal Science, 49 (2009) 310-315.
[174] D. Balli, L. Cecchi, G. Pieraccini, M. Innocenti, S. Benedettelli, N. Mulinacci, What’s new on total phenols and γ-oryzanol derivatives in wheat? A comparison between modern and ancient varieties, Journal of Food Composition and Analysis, 109 (2022) 104453.
[175] S.M. Krebs-Smith, T.E. Pannucci, A.F. Subar, S.I. Kirkpatrick, J.L. Lerman, J.A. Tooze, M.M. Wilson, J. Reedy, Update of the healthy eating index: HEI-2015, Journal of the Academy of Nutrition and Dietetics, 118 (2018) 1591-1602.
[176] Y. Jiang, T. Wang, Phytosterols in cereal by-products, Journal of the American Oil Chemists' Society, 82 (2005) 439-444.
[177] H. Wieser, P. Koehler, K. Scherf, Chapter 5–wheat-based raw materials. Wheat–an exceptional crop, Woodhead Publishing, New York, 2020.
[178] G. Hölzl, P. Dörmann, Thin-Layer Chromatography, in: D. Bartels, P. Dörmann (Eds.) Plant Lipids: Methods and Protocols, Springer US, New York, NY, 2021, pp. 29-41.
[179] X. Liu, Organic Chemistry I, Kwantlen Polytechnic University 2021.
[180] A.S. Mazur, M.A. Vovk, P.M. Tolstoy, Solid-state 13C NMR of carbon nanostructures (milled graphite, graphene, carbon nanotubes, nanodiamonds, fullerenes) in 2000–2019: a mini-review, Fullerenes, Nanotubes and Carbon Nanostructures, 28 (2020) 202-213.
[181] Anonymous, Characterizing fatty acids with advanced multinuclear NMR methods, 2018.
[182] M. Kolen, W.A. Smith, F.M. Mulder, Accelerating 1H NMR Detection of Aqueous Ammonia, ACS omega, 6 (2021) 5698-5704.
[183] R. Ningthoujam, N. Gajbhiye, S. Sharma, Reduction mechanism of Ni 2+ into Ni nanoparticles prepared from different precursors: magnetic studies, Pramana, 72 (2009) 577-586.
[184] A. Amiel, M. Tremblay-Franco, R. Gautier, S. Ducheix, A. Montagner, A. Polizzi, L. Debrauwer, H. Guillou, J. Bertrand-Michel, C. Canlet, Proton NMR enables the absolute quantification of aqueous metabolites and lipid classes in unique mouse liver samples, Metabolites, 10 (2019) 9.
[185] I. Gonzalez-Thuillier, L. Salt, G. Chope, S. Penson, P. Skeggs, P. Tosi, S.J. Powers, J.L. Ward, P. Wilde, P.R. Shewry, Distribution of lipids in the grain of wheat (cv. Hereward) determined by lipidomic analysis of milling and pearling fractions, Journal of Agricultural and Food Chemistry, 63 (2015) 10705-10716.
[186] V. Rech-Cainelli, N.M. de Barros, S. Garcia-Gianni, A.C. Sbeghen-Loss, H. Heinzen, A.R. Díaz, I. Migues, A. Specht, M.V. Cesio, Antifeedant and repellent effects of neotropical Solanum extracts on drywood termites,(Cryptotermes brevis Walker, Isoptera: Kalotermitidae), Sociobiology, 62 (2015) 82-87.
[187] J.C. Hoch, K. Baskaran, H. Burr, J. Chin, H.R. Eghbalnia, T. Fujiwara, M.R. Gryk, T. Iwata, C. Kojima, G. Kurisu, Biological magnetic resonance data bank, Nucleic acids research, 51 (2023) D368-D376.
[188] V. Molinier, B. Fenet, J. Fitremann, A. Bouchu, Y. Queneau, Concentration measurements of sucrose and sugar surfactants solutions by using the 1H NMR ERETIC method, Carbohydrate research, 341 (2006) 1890-1895.
[189] N.V. Patil, A.N. Netravali, Enhancing strength of wool fiber using a soy flour sugar-based “green” cross-linker, ACS omega, 4 (2019) 5392-5401.
[190] V.H. Pomin, Unravelling glycobiology by NMR spectroscopy, Glycosylation, IntechOpen London, UK2012, pp. 63-98.
[191] N. Yusuf, S. Yusup, C. Yiin, P. Ratri, A. Halim, N. Razak, Prediction of solvation properties of low transition temperature mixtures (LTTMs) using COSMO-RS and NMR approach, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, pp. 012006.
[192] R. Beleggia, C. Platani, G. Spano, M. Monteleone, L. Cattivelli, Metabolic profiling and analysis of volatile composition of durum wheat semolina and pasta, Journal of cereal science, 49 (2009) 301-309.
[193] A. Zhu, Q. Zhou, S. Hu, F. Wang, Z. Tian, X. Hu, H. Liu, D. Jiang, W. Chen, Metabolomic analysis of the grain pearling fractions of six bread wheat varieties, Food Chemistry, 369 (2022) 130881.
[194] Ľ. Leváková, M. Lacko-Bartošová, Phenolic acids and antioxidant activity of wheat species: A review, Agriculture (Pol'nohospodárstvo), 63 (2017) 92-101.
[195] F.M. Anjum, I. Ahmad, M.S. Butt, M. Sheikh, I. Pasha, Amino acid composition of spring wheats and losses of lysine during chapati baking, Journal of Food Composition and Analysis, 18 (2005) 523-532.
[196] T. Marček, K.A. Hamow, B. Végh, T. Janda, E. Darko, Metabolic response to drought in six winter wheat genotypes, PLoS one, 14 (2019) e0212411.
[197] Y. Verhertbruggen, X. Falourd, M. Sterner, F. Guillon, C. Girousse, L. Foucat, S. Le Gall, A.-L. Chateigner-Boutin, L. Saulnier, Challenging the putative structure of mannan in wheat (Triticum aestivum) endosperm, Carbohydrate polymers, 224 (2019) 115063.
[198] K. Cheng, B. Wang, L. Xiao, Y. Bao, X. Xu, S. Zhang, Z. Liu, L. Dong, Comprehensive metabolite analysis of wheat dough in a continuous heating process, Food Research International, 153 (2022) 110972.
[199] M. Ačanski, K. Pastor, Đ. Psodorov, Đ. Vujić, R. Razmovski, S. Kravić, Determination of the presence of buckwheat flour in bread by the analysis of minor fatty acid methyl esters, Advanced Technologies, 4 (2015) 86-92.
[200] C.M. Rico, D. Wagner, O. Abolade, B. Lottes, K. Coates, Metabolomics of wheat grains generationally-exposed to cerium oxide nanoparticles, Science of The Total Environment, 712 (2020) 136487.
[201] L.R. Gerits, B. Pareyt, J.A. Delcour, Single run HPLC separation coupled to evaporative light scattering detection unravels wheat flour endogenous lipid redistribution during bread dough making, LWT-Food Science and Technology, 53 (2013) 426-433.
[202] S. Narayanan, P.V. Prasad, R. Welti, Alterations in wheat pollen lipidome during high day and night temperature stress, Plant, cell & environment, 41 (2018) 1749-1761.