Özet
Cement and iron-steel sectors are significant sectors in Turkey, and these sectors are major pollution sources and major energy consumers. Studies on volatile organic compounds (VOC) emissions emitted from these sectors are scarce in number, although VOCs are significantly toxic. Hence, this study aims to estimate the VOC emissions from cement and integrated iron-steel production plant data using acknowledged emission factors (EFs) worldwide and plant-specific operational data gathered for cement and iron-steel plants. 2020 is the base year of this study, and plant-specific data for the year 2020 and the two sectors, are gathered. While CO, SO2, NO2 and PM10 emissions are dominant in the cement industry, volatile organic compounds (VOCs) are also released due to the organic feeds to the processes, alternative fuel and raw material adoption and leaks from the process furnaces if required combustion conditions are not met. Fifty-six integrated cement plants and three-integrated iron and steel plants are covered in this study. Cement and iron-steel industries are preferred because they have a very high share of energy consumption and greenhouse gas (GHG) emission intensity in Turkey. The focus of this thesis is VOCs because VOCs can be lethal even in small amounts and there are limited studies in the literature on VOC emissions from the major industries of Turkey on a national and on global scale. CO, SO2, NO2 and PM10 emissions are also studied to determine if these pollutants directly or indirectly impact the VOC emissions. In this study, the annual productions of cement and iron and steel plants are multiplied by all VOC emission factors used within the scope of the study. Then it is decided which emission factor is appropriate to use in light of the fuel and other operational data gathered from each plant individually. As a result of the final VOC emission estimations, it is observed that using alternative fuels and fossil fuels together in cement plants results in higher VOC emissions. Coke production and sintering plant VOC emissions in iron and steel plants result in higher VOC emissions than the other processes. It is also observed that VOC emissions are as intense as other pollutants’ emissions for the two sectors, based on the estimations made. As a result of the estimates, when the total VOC emissions of cement plants and iron and steel plants are compared with the official emission inventory data most recently published in 2020 by the Ministry of Environment, Urbanization and Climate Change, it is found that VOC emissions have a share of 12.5% in all iron and steel and, non-metallic minerals industries including cement plants operating in Turkey, 1.51% in all industrial sectors and 0.48% in all sectors. Then, one reduction scenario is developed for each sector and existing emission estimates. In these scenarios, the reductions in existing emissions are assessed if upgraded technologies have been adopted. If these reduction scenarios had been developed, VOC emissions would have decreased by 54.03% for fifty-six cement plants and by 14.26% for the sum of VOC emissions of three integrated iron and steel plants, compared to this study’s estimates.
Künye
[1] Türkiye Çelik Üreticileri Derneği, “Demir Çelik Sektörü.” https://celik.org.tr/demir-celik-sektoru/
[2] TUIK, “Turkish GHG Inventory Report 1990-2020,” Ankara, 2022.
[3] X. Bai et al., “Emission characteristics and inventory of volatile organic compounds from the Chinese cement industry based on field measurements,” Environ. Pollut., vol. 316, no. P1, p. 120600, 2023, doi: 10.1016/j.envpol.2022.120600.
[4] US EPA, “Coke Production,” 2008.
[5] EEA, “2.C.1 Iron and Steel Production,” 2019.
[6] EMEP/EEA, “Fugitive emissions from solid fuels: solid fuel transformation,” EMEP/EEA air Pollut. Emiss. Invent. Guideb. 2019, pp. 1–22, 2019.
[7] U.S. EPA, “Portland Cement Manufacturing,” 2022.
[8] D. Freudenberger, J. Harvey, A. E. Australia., and C. (Australia). D. of S. Ecosystems., “Emission estimation technique manual for Iron and Steel manufacturing,” 1999.
[9] D. Freudenberger, J. Harvey, Australia. Environment Australia., and CSIRO (Australia). Division of Sustainable Ecosystems., “Emission estimation technique manual for Cement manufacturing Version 2.1 April 2008,” Environment Australia, 2003.
[10] J. Berdowski et al., “2.A.1 Cement production EMEP/EEA emission inventory guidebook 2009 1 Category Title NFR: 2.A.1 Cement production SNAP: 040612 Cement ISIC: 2694 Manufacture of cement, lime and plasterA.1 Cement production EMEP/EEA emission inventory guidebook 2009 2,” pp. 1–19, 2009.
[11] T.C. Enerji ve Tabii Kaynaklar Bakanlığı, “2020 Yılı Genel Enerji Denge Tablosu.” 2020.
[12] Çevre Şehircilik ve İklim Değişikliği Bakanlığı, “Sanayi Kaynaklı Hava Kirliliğinin Kontrolü Yönetmeliği,” 2009. https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=13184&MevzuatTur=7&MevzuatTertip=5 (accessed May 25, 2023).
[13] S. ÜRÜT KELLECİ, A. BOSTAN, and A. YILMAZ, “Türkiye Ekonomisinde Sektörel Enerji Tüketiminin Ayrıştırma Yöntemiyle Analizi,” Dokuz Eylul Univ. Iktis. ve Idari Bilim. Derg., vol. 31, no. 2, pp. 1–28, 2016, doi: 10.24988/deuiibf.2016312484.
[14] Ministry of Energy and Natural Resources, “2019 Yılı Genel Enerji Denge Tablosu.” 2020.
[15] EPA, “Basic Information of Air Emissions Factors and Quantification,” 2019. https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification (accessed Feb. 07, 2021).
[16] U.S. EPA, “Metallurgical Industry-Iron and Steel Production,” 2011.
[17] C. Group, T. Materials, N. Greenhouse, and G. Inventories, “Methodological Choice and Key Categories Analysis Foreword , Copyright and Disclaimer.”
[18] J. Chen and M. D. Brauch, “Comparison Between the IPCC Reporting Framework and Country Practice JULY 2021.”
[19] Çevre Şehircilik ve İklim Değişikliği Bakanlığı, “Çimento Üretimi Sektörel Uygulama Kılavuzu (Taslak),” Ankara.
[20] MoEU, “Informative Inventory Report,” 2022.
[21] TÇMB, “Üye Fabrikalar.” https://www.turkcimento.org.tr/tr/uye_fabrikalar (accessed Nov. 28, 2022).
[22] A. Rahman, M. G. Rasul, M. M. K. Khan, and S. Sharma, “Impact of alternative fuels on the cement manufacturing plant performance: An overview,” Procedia Eng., vol. 56, pp. 393–400, 2013, doi: 10.1016/j.proeng.2013.03.138.
[23] C. S. Psomopoulos and N. J. Themelis, “Use of alternative fuels in cement industry,” 2014, no. July.
[24] U. Muliane and P. Lestari, “Utilization of alternative fuels and materials in cement kiln towards emissions of benzene, toluene, ethyl-benzene and xylenes (BTEX),” in MATEC Web of Conferences, Jan. 2018, vol. 147. doi: 10.1051/matecconf/201814708002.
[25] Institute fur Technische Chemie, F. Karlsruhe, and Karlsruhe, “DECOMPOSITION OF VOLATILE ORGANIC COMPOUNDS AND POLYCYCLIC AROMATIC HYDROCARBONS IN INDUSTRIAL OFF-GAS BY ELECTRON BEAMS: A REVIEW,” pp. 47–57, 2018, doi: 10.1007/978-3-030-00407-1_4.
[26] MNE PROJE, “Baca gazinda civa, di̇oksi̇n ve furanin pac’la absorsi̇yonu,” 2021.
[27] G. Voicu, C. Ciobanu, I. A. Istrate, and P. Tudor, “Emissions control of hydrochloric and fluorhydric acid in cement factories from Romania,” Int. J. Environ. Res. Public Health, vol. 17, no. 3, 2020, doi: 10.3390/ijerph17031019.
[28] EMCI (European Masters in Conference Interpreting Consortium), “Pollution and Pollution Control in Cement Industry,” 2021.
[29] F. Didem Tunçez, “Sürdürülebilir Çimento Üretiminde Çevre Yönetimi Yasal Bileşenleri,” Ulus. Çevre Bilim. Araştırma Derg., vol. 4, no. 1, pp. 41–56, 2021.
[30] Sanayi ve Teknoloji Bakanlığı, “Demir çelik sektör raporu,” Demir çelik sektör raporu, no. 20 20, p. 35, 2020.
[31] Joint Research Centre, “Best Available Techniques (BAT) Reference Document for Iron and Steel Production Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control),” 2020. doi: 10.4324/9781315435138-20.
[32] International Energy Agency (IEA), “Iron&Steel,” IEA, 2023. https://www.iea.org/fuels-and-technologies/iron-steel (accessed Mar. 01, 2023).
[33] IPCC, “7.4.1 Iron and steel,” IPCC. https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/ch7-ens7-4-1.html#:~:text=Coal (in the form of,in the production of iron.
[34] Y. Wang et al., “Volatile organic compounds (VOC) emissions control in iron ore sintering process: Recent progress and future development,” Chem. Eng. J., vol. 448, no. June, p. 137601, 2022, doi: 10.1016/j.cej.2022.137601.
[35] J. Li et al., “The ignored emission of volatile organic compounds from iron ore sinter process,” J. Environ. Sci. (China), vol. 77, pp. 282–290, 2019, doi: 10.1016/j.jes.2018.08.007.
[36] Dokuz Eylül Üniversitesi, “Entegre Demir Çelik Üretimi,” pp. 5–12, 2020.
[37] International Finance Corporation, “Environmental , Health , and Safety Guidelines for Integrated Steel Mills,” 2007.
[38] W. B. Group, “Nitrogen Oxides : Pollution Prevention and Control,” Water, no. July, pp. 245–249, 1998.
[39] X. Guo, Y. Shen, W. Liu, D. Chen, and J. Liu, “Estimation and prediction of industrial VOC emissions in Hebei province, China,” Atmosphere (Basel)., vol. 12, no. 5, pp. 1–20, 2021, doi: 10.3390/atmos12050530.
[40] X. Liang, X. Sun, J. Xu, and D. Ye, “Improved emissions inventory and VOCs speciation for industrial OFP estimation in China,” Sci. Total Environ., vol. 745, Nov. 2020, doi: 10.1016/j.scitotenv.2020.140838.
[41] M. of E. and E. The People’s Republic Of China, “Technical Manual for the Preparation of Urban Air Pollutant Emission Inventory,” Beijing, 2018.
[42] N. Mohamad, K. Muthusamy, R. Embong, A. Kusbiantoro, and M. H. Hashim, “Environmental impact of cement production and Solutions: A review,” Mater. Today Proc., vol. 48, pp. 741–746, 2021, doi: 10.1016/j.matpr.2021.02.212.
[43] K. H. Karstensen, “Formation and Release of POPs in the Cement Industry Second edition,” World Bus. Counc. Sustain. Dev., no. January, p. 200, 2006.
[44] The People’s Republic Of China Ministry of Ecology and Environment, “Technical Guidelines for Compiling Emission Inventory of Atmospheric Volatile Organic Compounds Sources (for Trial Implementation),” 2012.
[45] Y. Yang et al., “Prioritization of VOCs Emitted from Co-Processing Cement Kiln Using a Fuzzy Analytic Hierarchy Process Method,” no. May, pp. 1–14, 2022.
[46] D. García-Gusano, I. Herrera, D. Garraín, Y. Lechón, and H. Cabal, “Life cycle assessment of the Spanish cement industry: Implementation of environmental-friendly solutions,” Clean Technol. Environ. Policy, vol. 17, no. 1, pp. 59–73, 2015, doi: 10.1007/s10098-014-0757-0.
[47] U. Alyuz and K. Alp, “Emission inventory of primary air pollutants in 2010 from industrial processes in Turkey,” Sci. Total Environ., vol. 488–489, no. 1, pp. 369–381, 2014, doi: 10.1016/j.scitotenv.2014.01.123.
[48] D. Giannopoulos, D. I. Kolaitis, A. Togkalidou, G. Skevis, and M. A. Founti, “Quantification of emissions from the co-incineration of cutting oil emulsions in cement plants - Part I: NOx, CO and VOC,” Fuel, vol. 86, no. 7–8, pp. 1144–1152, May 2007, doi: 10.1016/j.fuel.2006.10.025.
[49] E. A. Asamany, M. D. Gibson, and M. J. Pegg, “Evaluating the potential of waste plastics as fuel in cement kilns using bench-scale emissions analysis,” Fuel, vol. 193, pp. 178–186, 2017, doi: 10.1016/j.fuel.2016.12.054.
[50] U. Parlikar, P. S. Bundela, R. Baidya, S. K. Ghosh, and S. K. Ghosh, “Effect of Variation in the Chemical Constituents of Wastes on the Co-processing Performance of the Cement Kilns,” Procedia Environ. Sci., vol. 35, pp. 506–512, 2016, doi: 10.1016/j.proenv.2016.07.035.
[51] G. Sai Kishan, Y. Himath Kumar, M. Sakthivel, R. Vijayakumar, and N. Lingeshwaran, “Life cycle assesment on tire derived fuel as alternative fuel in cement industry,” Mater. Today Proc., vol. 47, pp. 5483–5488, 2021, doi: 10.1016/j.matpr.2021.07.472.
[52] J. A. Conesa, A. Gálvez, F. Mateos, I. Martín-Gullón, and R. Font, “Organic and inorganic pollutants from cement kiln stack feeding alternative fuels,” J. Hazard. Mater., vol. 158, no. 2–3, pp. 585–592, Oct. 2008, doi: 10.1016/j.jhazmat.2008.01.116.
[53] N. Moussiopoulos, G. Banias, J. Douros, A. V. Michailidou, and G. Tsegas, “Emission estimates andair quality impacts from the use of alternative fuels by the titan cement factory in thessaloniki,” Glob. Nest J., vol. 14, no. 2, pp. 218–224, 2012, doi: 10.30955/gnj.000874.
[54] R. Jin, L. Yang, M. Zheng, Y. Xu, C. Li, and G. Liu, “Source identification and quantification of chlorinated and brominated polycyclic aromatic hydrocarbons from cement kilns co-processing solid wastes,” Environ. Pollut., vol. 242, pp. 1346–1352, 2018, doi: 10.1016/j.envpol.2018.08.025.
[55] H. H. Yang, S. K. Gupta, and N. B. Dhital, “Emission factor, relative ozone formation potential and relative carcinogenic risk assessment of VOCs emitted from manufacturing industries,” Sustain. Environ. Res., vol. 30, no. 1, Dec. 2020, doi: 10.1186/s42834-020-00068-2.
[56] C.-T. Shao, W.-H. Cheng, Y.-C. Lin, K.-L. Chang, K.-S. Chen, and C.-S. Yuan, “Qualifying and Quantifying the Emissions of Volatile Organic Compounds from the Coking Process in a Steel Plant Using an Innovative Sampling Technique,” Atmosphere (Basel)., vol. 13, no. 9, p. 1363, Aug. 2022, doi: 10.3390/atmos13091363.
[57] L. Cheng et al., “Quantitation study on VOC emissions and their reduction potential for coking industry in China: Based on in-situ measurements on treated and untreated plants,” Sci. Total Environ., vol. 836, no. November 2021, p. 155466, 2022, doi: 10.1016/j.scitotenv.2022.155466.
[58] J. H. Tsai, K. H. Lin, C. Y. Chen, N. Lai, S. Y. Ma, and H. L. Chiang, “Volatile organic compound constituents from an integrated iron and steel facility,” J. Hazard. Mater., vol. 157, no. 2–3, pp. 569–578, Sep. 2008, doi: 10.1016/j.jhazmat.2008.01.022.
[59] D.-A. Iluţiu-Varvara et al., “An Assessment of Pollution with Volatile Organic Compounds in the Electric Arc Furnaces,” in Procedia Technology, 2016, vol. 22, no. October 2015, pp. 452–456. doi: 10.1016/j.protcy.2016.01.086.
[60] M. Odabasi et al., “Electric arc furnaces for steel-making: Hot spots for persistent organic pollutants,” Environ. Sci. Technol., vol. 43, no. 14, pp. 5205–5211, 2009, doi: 10.1021/es900863s.
[61] J. C. Chiu, Y. H. Shen, H. W. Li, L. F. Lin, L. C. Wang, and G. P. Chang-Chien, “Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from an electric arc furnace, secondary aluminum smelter, crematory and joss paper incinerators,” Aerosol Air Qual. Res., vol. 11, no. 1, pp. 13–20, 2011, doi: 10.4209/aaqr.2010.06.0051.
[62] ÇİMENTAŞ, “Çimentaş 2020 Yılı Faaliyet Raporu,” 2020.
[63] SÖNMEZ ÇİMENTO, “Hakkımızda.” https://www.sonmezcimento.com.tr/hakkimizda/ (accessed Nov. 28, 2022).
[64] “Türkiye Çimento Sanayicileri Birliği.” https://www.turkcimento.org.tr/en (accessed Sep. 18, 2022).
[65] GÖLTAŞ, “Göltaş Çimento 2020 Yılı Faaliyet Raporu,” 2020.
[66] KARDEMİR, “Ürünler.” https://www.kardemir.com/urunler (accessed Nov. 28, 2022).
[67] OYAK, “Ürün ve Hizmetler.” https://www.isdemir.com.tr/kurumsal/urun-ve-hizmetler/ (accessed Nov. 28, 2022).
[68] OYAK, “Erdemir 2020 Yılı Faaliyet Raporu,” 2021.
[69] Ağır Sanayi Çözümleri Dergisi, “KARDEMİR 2020 YILINDA BÜYÜMEYE DEVAM ETTİ,” Ağır Sanayi Çözümleri Dergisi, 2021. https://www.stendustri.com.tr/agir-sanayi-cozumleri/kardemir-2020-yilinda-buyumeye-devam-etti-h113536.html (accessed Nov. 28, 2022).
[70] X. Bai et al., “Emission characteristics and inventory of volatile organic compounds from the Chinese cement industry based on field measurements,” Environ. Pollut., vol. 316, p. 120600, Jan. 2023, doi: 10.1016/j.envpol.2022.120600.
[71] U.S. EPA, “Coke Production,” 2000.
[72] B. Neuffer and M. Laney, “Alternative Control Techniques Document Update - NOx Emissions from New Cement Kilns,” 2007. https://www3.epa.gov/ttncatc1/dir1/cement_updt_110 (accessed May 25, 2023).
[73] Ministry of Environment Urbanization and Climate Change, “Project for Determination of Compliance Conditions and Requirements of Cement Production Facilities Subject to Integrated Environmental Permit (ECC) - European Union Cement Lime and Magnesium Oxide Best Available Techniques (BAT) Reference Document (BREF ,” pp. 1–53, 2016.
[74] T. Republic, “Turkey’s Informative Inventory Report (IIR) 2021 Ministry of Environment and Urbanization-Çevre ve Şehircilik Bakanlığı,” 2021.
[75] E. Monitoring and M. I. Khoder, “Diurnal , seasonal and weekdays-weekends variations of ground level ozone concentrations in an urban area in greater Cairo Diurnal , seasonal and weekdays – weekends variations of ground level ozone concentrations in an urban area in greater Cairo,” no. October, 2014, doi: 10.1007/s10661-008-0208-7.
[76] P. B. Castro and SÉBASTIEN CARON, “Fugitive and Stationary Source Emissions from Coke Plants and Impact on the Local Ambient Air Quality,” 2006, vol. 44, no. 2, pp. 8–10.
[77] Q. He, Y. Yan, Y. Zhang, X. Wang, and Y. Wang, “Coke workers’ exposure to volatile organic compounds in northern China: a case study in Shanxi Province,” Environ. Monit. Assess., vol. 187, no. 6, 2015, doi: 10.1007/s10661-015-4582-7.
[78] US EPA, “Air Emission Factors and Quantification: AP-42 Frequent Questions,” 2022. https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-frequent-questions (accessed May 25, 2023).
[79] S. Sun et al., “Effects of air pollution control devices on volatile organic compounds reduction in coal- fi red power plants,” Sci. Total Environ., vol. 782, p. 146828, 2021, doi: 10.1016/j.scitotenv.2021.146828.
[80] E. Cetin, M. Odabasi, and R. Seyfioglu, “Ambient volatile organic compound (VOC) concentrations around a petrochemical complex and a petroleum refinery,” Sci. Total Environ., vol. 312, no. 1–3, pp. 103–112, 2003, doi: 10.1016/S0048-9697(03)00197-9.
[81] LİMAK, “Limak 2020 Yılı Faaliyet Raporu,” 2020.
[82] AKÇANSA, “Akçansa 2020 Yılı Faali̇yet Raporu,” 2020.
[83] OYAK, “Oyak 2020 Yılı Faaliyet Raporu,” 2020.
[84] NUH ÇİMENTO, “Nuh Çi̇mento 2020 Yılı Faaliyet Raporu,” 2020.
[85] BURSA ÇİMENTO, “Bursa Çimento 2020 Yılı Faaliyet Raporu,” 2020.
[86] SANKO, “Sanko 2020 Yılı Faaliyet Raporu,” 2020.
[87] ÇİMSA, “Çimsa 2020 Yılı Faaliyet Raporu,” 2020.
[88] SOMA ÇİMENTO, “Sürdürülebilirlik.” https://www.somacimento.com.tr/surdurulebilirlik/ (accessed Nov. 27, 2022).
[89] BATI ANADOLU, “Batı Anadolu Grubu 2020 Yılı Faaliyet Raporu,” 2020. https://www.ptonline.com/articles/how-to-get-better-mfi-results (accessed Nov. 27, 2022).
[90] AS ÇİMENTO, “Başkandan Mesaj.” https://www.ascimento.com.tr/kurumsal/baskandan-mesaj (accessed Nov. 27, 2022).
[91] GÖLTAŞ, “ŞİRKETİMİZ,” 2020. https://www.goltas.com.tr/tr/kurumsal/sirketimiz/ (accessed Nov. 27, 2022).
[92] VICAT GROUP, “Çimento Fabrikamız.” http://www.bastas.com.tr/cimento-fabrikamiz.aspx (accessed Nov. 27, 2022).
[93] KONYA ÇİMENTO, “Konya Çimento 2020 Yılı Faali̇yet Raporu,” 2020.
[94] SERDAR MÜHENDİSLİK, “VOTORANTİM ÇİMENTO SAN. VE TİC. A.Ş. ÇİMENTO ÖĞÜTME KAPASİTE ARTIŞI PROJE TANITIM DOSYASI,” Ankara, 2014.
[95] BAŞTAŞ ÇİMENTO, “Baştaş Çimento 2020 Yılı Faaliyet Raporu,” 2020.
[96] VOTORANTIM CIMENTOS, “Votorantim Yozgat 2020 Yılı Faaliyet Raporu,” 2020.
[97] ADOÇİM, “Tokat Entegre Tesisi.” https://www.adocim.com/tokat-entegre-tesisi/ (accessed Nov. 27, 2022).
[98] KÇS KİPAŞ, “Hakkımızda.” https://kcskipascimento.com.tr/kurumsal/hakkimizda (accessed Nov. 28, 2022).
[99] ÇEV-MED, “MEDCEM ÇİMENTO KAPASİTE ARTIŞI (2.ÜRETİM HATTI İLAVESİ) NİHAİ ÇED RAPORU,” 2017.
[100] MEDCEM, “MEDCEM ÇİMENTO.” https://www.erenholding.com.tr/sayfa/medcem-cimento-43 (accessed Nov. 28, 2022).
[101] SYCS GROUP, “SEZA ÇİMENTO.” https://www.sezacimento.com.tr/ (accessed Nov. 28, 2022).
[102] AŞKALE, “AŞKALE ÇİMENTO.” https://www.askalecimento.com.tr/tesisler (accessed Nov. 28, 2022).
[103] YURTCEMENT, “Hakkımızda.” https://yurtcimento.csglobal.com.tr/ (accessed Nov. 27, 2022).
[104] ARKOZ, “Ağrı Çimento.” https://www.arkoz.com.tr/hakkimizda/ (accessed Nov. 27, 2022).
[105] SOYAK HOLDİNG, “TRAÇİM ÇİMENTO.” https://www.soyakholding.com.tr/soyak-tr/cimento/tracim-cimento (accessed Nov. 28, 2022).
[106] ÜST YAPI, “MARMARA ÇİMENTO FABRİKASI,” 2020. http://www.ustyapi.com/ (accessed Nov. 28, 2022).
[107] SANÇİM, “Sançim Çimento.” https://www.sancim.com.tr/ (accessed Nov. 28, 2022).
[108] SERDAR MÜHENDİSLİK, “Vezirhan Entegre Çimento Fabrikası Kapasite Artışı ÇED Başvuru Dosyası,” 2021.
[109] “Raw materials,” World Steel Association, 2022. https://worldsteel.org/steel-topics/raw-materials/ (accessed Nov. 21, 2022).
[110] “Pig Iron,” International Iron Metallics Association. https://www.metallics.org/pig-iron.html (accessed Nov. 21, 2022).
[111] D. Burchart-Korol, “Significance of environmental life cycle assessment (LCA) method in the iron and steel industry,” Metalurgija, vol. 50, no. 3, pp. 205–208, 2011.
[112] WORLD BANK GROUP, “Coke Manufacturing,” 2007.
[113] TÇMB, “2020 Yılı Aralık Ayı Verileri,” Ankara, 2021.
[114] International Energy Agency (IEA), “Cement Tracking Report,” 2022. https://www.iea.org/reports/cement (accessed Nov. 28, 2022).