dc.contributor.advisor | Dağ, Osman | |
dc.contributor.author | Saman, Özgür | |
dc.date.accessioned | 2023-09-05T12:35:59Z | |
dc.date.issued | 2023-08-24 | |
dc.date.submitted | 2023-08-18 | |
dc.identifier.citation | Saman Ö. Boruta ve Elastik Ağ Algoritmalarının Gen Seçim Performanslarının RNA Dizileme Veri Setleri Üzerinde Karşılaştırılması: Bir Monte Carlo Benzetim Çalışması [Yüksek lisans tezi]. Ankara: Hacettepe Üniversitesi; 2023. | tr_TR |
dc.identifier.uri | https://hdl.handle.net/11655/33958 | |
dc.description.abstract | Boruta Algorithm and Determan's Algorithm in Elastic Net Generalized Linear Models were applied to select the genes that have a significant effect on the related cancer disease using eight real RNA sequencing data set belonging to different cancer types obtained from the Cancer Genome Atlas Program. Algorithms belonging to seven of the methods within the Boruta Algorithm, which differ according to different classification methods and various importance criteria, were applied separately and the results obtained were compared not only with the Elastic Network Algorithm but also with each other. A Monte Carlo simulation study was performed based on the real data sets. The gene sets used for feature selection were obtained by applying preprocessing steps in four stages: filtering, normalization, transformation and univariate analysis. Thus, feature selection methods were applied to the data sets that were preprocessed with various filters and model performances were analyzed. The performances of the feature selection methods were compared using measures such as Precision, Recall and F1 Measure. For all of the data sets used in the study, Elastic Net Algorithm stood out in terms of Precision. Boruta Algorithm based on Extra Trees and Random Ferns outperformed the Elastic Net Algorithm in terms of Recall. | tr_TR |
dc.language.iso | tur | tr_TR |
dc.publisher | Sağlık Bilimleri Enstitüsü | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | tr_TR |
dc.subject | Boruta | tr_TR |
dc.subject | Elastik ağ | |
dc.subject | Özellik seçimi | |
dc.subject | RNA dizileme | |
dc.subject | Benzetim | |
dc.subject | Kanser | |
dc.subject.lcsh | İstatistikler | tr_TR |
dc.title | Boruta ve Elastik Ağ Algoritmalarının Gen Seçim Performanslarının RNA Dizileme Veri Setleri Üzerinde Karşılaştırılması: Bir Monte Carlo Benzetim Çalışması | tr_TR |
dc.type | info:eu-repo/semantics/masterThesis | tr_TR |
dc.description.ozet | Kanser Genom Atlası Programından elde edilen farklı kanser türlerine ait sekiz gerçek RNA dizileme veri seti kullanılarak ilgili kanser hastalığına önemli derecede etki eden genlerin seçilmesinde, Boruta Algoritması ve Elastik Ağ Genelleştirilmiş Doğrusal Modeller İçerisinde Determan'ın Algoritması uygulanmıştır. Boruta Algoritmasının kendi içerisinde bulunan, sınıflandırma yöntemlerine ve önemlilik ölçütlerine göre farklılaşan yöntemlerden yedi tanesine ait algoritmalar, ayrı ayrı olarak uygulanmış ve elde edilen sonuçlar sadece Elastik Ağ Algoritması ile değil aynı zamanda birbirleri ile de kıyaslanmıştır. Gerçek veri setlerine dayalı olarak bir Monte Carlo benzetim çalışması yapılmıştır. Özellik seçiminde kullanılan gen setleri; filtreleme, normalleştirme, dönüşüm ve tek değişkenli analiz olmak üzere dört aşamada ön işleme adımları uygulanarak elde edilmiştir. Böylece, çeşitli filtrelerle ön işleme adımları tamamlanan veri setlerine özellik seçimi yöntemleri uygulanarak model performansları incelenmiştir. Özellik seçimi yöntemlerinin performansları Pozitif Kestirim Değeri, Duyarlılık, F1 Ölçüsü gibi ölçüler kullanılarak karşılaştırılmıştır. Çalışmada kullanılan veri setlerinin tümünde Elastik Ağ Algoritması, Pozitif Kestirim Değeri açısından öne çıkmıştır. Boruta Algoritmasının Ekstra Ağaçlar ve Random Ferns tabanlı yöntemleri, Duyarlılık Oranları açısından Elastik Ağ Algoritmasından daha iyi performans göstermiştir. | tr_TR |
dc.contributor.department | Biyoistatistik | tr_TR |
dc.embargo.terms | Acik erisim | tr_TR |
dc.embargo.lift | 2023-09-05T12:35:59Z | |
dc.funding | Yok | tr_TR |