Basit öğe kaydını göster

dc.contributor.advisorŞatıroğlu, Nuray
dc.contributor.authorDemir, Selda
dc.date.accessioned2017-05-11T12:19:19Z
dc.date.available2017-05-11T12:19:19Z
dc.date.issued2017
dc.date.submitted2017-05-08
dc.identifier.citation[1] B. Naik and N. N. Ghosh, “A review on chemical methodologies for preparation of mesoporous silica and alumina based materials.,” Recent Pat. Nanotechnol., vol. 3, no. 3, pp. 213–224, 2009. [2] S. Malamis and E. Katsou, “A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms,” Journal of Hazardous Materials, vol. 252–253. pp. 428–461, 2013. [3] S. A. El-Safty and T. Hanaoka, “Monolithic nanostructured silicate family templated by lyotropic liquid-crystalline nonionic surfactant mesophases,” Chem. Mater., vol. 15, no. 15, pp. 2892–2902, 2003. [4] N. Pal and A. Bhaumik, “Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic-inorganic hybrid and purely organic solids,” Adv. Colloid Interface Sci., vol. 189–190, pp. 21–41, 2013. [5] P. C. a Jerónimo, A. N. Araújo, and M. Conceição B S M Montenegro, “Optical sensors and biosensors based on sol-gel films.,” Talanta, vol. 72, no. 1, pp. 13–27, 2007. [6] Hu KH, Friede RL. “Topographic determination of zinc in human brain by atomic absorption spectrophotometry.” J NeuroChem; 15: 677-685, 1968. [7] N. Verma and G. Kaur, “Zinc finger peptide based optic sensor for detection of zinc ions,” Biosens. Bioelectron., vol. 86, pp. 466–471, 2016. [8] C. Petcu, V. Purcar, A. L. Radu, R. Ianchis, A. Elvira, A. Sarbu, D. Ion- Ebrasu, A. R. Miron, C. Modrogan, and A. I. Ciobotaru, “Removal of zinc ions from model wastewater system using bicopolymer membranes with fumed silica,” J. Water Process Eng., vol. 8, pp. 1–10, 2015. [9] F. Breu, S. Guggenbichler, and J. Wollmann, World Health Statistics 2013. 2013. [10] R. Kumar and M. Thakur, “Determination of free and total zinc 5- diethylaminophenol in mixed surfactant medium,” vol. 44, pp. 6–9. [11] J. a Salonia, R. G. Wuilloud, J. a Gásquez, R. a Olsina, and L. D. Martinez, 67 “On-line complexation of zinc with 5-Br-PADAP and preconcentration using a knotted reactor for inductively coupled plasma atomic emission spectrometric determination in river water samples.,” Fresenius. J. Anal. Chem., vol. 367, no. 7, pp. 653–7, 2000. [12] G. Qye, J. Sjöblom, M. Stöcker, “Synthesis, characterization and patential applications of new materials in the mesoporous range,” Advances İn Colloid And İnterface Science, 89-90, 439-466, 2001. [13] J. Y. Ying, C. P. Mehnert, and M. S. Wong, “Synthesis and Applications of Supramolecular-Templated Mesoporous Materials,” Angew. Chemie Int. Ed., vol. 38, no. 1–2, pp. 56–77, 1999. [14] Yoldaş, B.E. “Modification of polymer-gel structures,” J. Non-Cryst. Solids, 63, 145–154, 1984. [15] Brinker, C.; Scherer, G. Sol-Gel Science: The Physics and Chemistry of Sol- Gel Processing; Academic Press, Inc.: New York, NY, USA, 1990. [16] Brinker, C.J. Sol-gel processing of silica. In The Colloid Chemistry of Silica; American Chemical Society: Washington, DC, USA, Chapter 18, pp. 361– 402, 1994. [17] Wen, J.; Wilkes, G.L. “Organic/Inorganic hybrid network materials by the sol- gel approach,” Chem.Mater, 8, 1667–1681, 1996. [18] Zeid A. AL Othman. “A rewiew: Fundamental aspects of silicate mesoporous materials,” Materials, 2012. [19] T. Yanagisawa, T. Shimizu, K. Kuroda, and C. Kato, “The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials,” Bull. Chem. Soc. Jpn., vol. 63, no. 4, pp. 988–992, 1990. [20] S. A. El-Safty, Y. Kiyozumi, T. Hanaoka, and F. Mizukami, “Heterogeneous catalytic activity of NiO-silica composites designated with cubic Pm3n cage nanostructures,” Appl. Catal. B Environ., vol. 82, no. 3–4, pp. 169–179, 2008. 68 [21] Y. Wan and D. Zhao, “On the controllable soft-templating approach to mesoporous silicates,” Chem. Rev., vol. 107, no. 7, pp. 2821–2860, 2007. [22] P. Selvam, S. K. Bhatia, and C. G. Sonwane, “Recent Advances in Processing and Characterization of Periodic Mesoporous MCM-41 Silicate Molecular Sieves,” Ind. Eng. Chem. Res., vol. 40, no. 15, pp. 3237–3261, 2001. [23] F. Hoffmann, M. Cornelius, J. Morell, and M. Fröba, “Silica-based mesoporous organic-inorganic hybrid materials,” Angew. Chemie - Int. Ed., vol. 45, no. 20, pp. 3216–3251, 2006. [24] Zhao, D.; Huo, Q.; Jianglin, F.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 120, 6024, 1998. [25] Attard, G. S.; Glyde, J. C.; Go¨ltner, C. G. Nature. 378,366, 1995. [26] Campbell, T.; Corker, J. M.; Dent, A. J.; El-Safty, S. A.; Evans, J.; Fiddy, S. G.; Newton, M. A.; Ship, C. P.; Turin, S. Stud. Surf. Sci. Catal. 132, 667, 2001. [27] Coleman, N. R. B.; Attard, G. S. Microporous Mesoporous Mater.44, 73, 2001. [28] Attard, G. S.; Edgar, M.; Go¨ltner, C. G. Acta Mater. 46, 751, 1998. [29] W. Peysson and E. Vulliet, “Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography-time-offlight- mass spectrometry,” J. Chromatogr. A, vol. 1290, pp. 46–61, 2013. [30] E. R. Essien, O. A. Olaniyi, L. A. Adams, and R. O. Shaibu, “Sol-Gel-Derived Porous Silica : Economic Synthesis and Characterization,” J. Miner. Mater. Charact. Eng., vol. 11, no. October, pp. 976–981, 2012. [31] L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev., vol. 90, no. 1, pp. 33–72, 1990. [32] B. H. Fumes, M. R. Silva, F. N. Andrade, C. E. D. Nazario, and F. M. Lanças, “Recent advances and future trends in new materials for sample 69 preparation,” TrAC - Trends Anal. Chem., vol. 71, pp. 9–25, 2015. [33] Ş. Toygun, G. K. Ğ. Lu, and Y. Kalpakli, “Sigma 31, 456-476, 2013,” no. 212, pp. 456–476, 2013. [34] Y. S. Lin and S. G. Deng, Sol-gel preparation of nanostructured adsorbents, vol. 120 A. Elsevier Masson SAS, 1999. [35] A. M. Ali, A. A. Ismail, R. Najmy, and A. Al-Hajry, “Annealing effects on zinc oxide-silica films prepared by sol-gel technique for chemical sensing applications,” Thin Solid Films, vol. 558, pp. 378–384, 2014. [36] A. Lobnik, M. Turel, and Š. Urek, “Optical chemical sensors: Design and applications,” Adv. Chem. Sensors, pp. 1–28, 2012. [37] A. Duerkop, M. Turel, A. Lobnik, and O. S. Wolfbeis, “Microtiter plate assay for phosphate using a europium-tetracycline complex as a sensitive luminescent probe,” Anal. Chim. Acta, vol. 555, no. 2, pp. 292–298, 2006. [38] A. Lobnik and M. Ajlakovi, “Sol-gel based optical sensor for continuous determination of dissolved hydrogen peroxide,” in Sensors and Actuators, B: Chemical, vol. 74, no. 1–3, pp. 194–199, 2001. [39] N. K. Sing, J. Sharma, and N. Kaur, “Citation analysis of Journal of Documentatino,” Webology, vol. 8. 2011. [40] I. Murković, M. D. Steinberg, and B. Murković, “Sensors in neonatal monitoring: current practice and future trends.,” Technol. Health Care, vol. 11, no. 6, pp. 399–412, 2003. [41] T. Liu, G. Li, N. Zhang, and Y. Chen, “An inorganic-organic hybrid optical sensor for heavy metal ion detection based on immobilizing 4-(2-pyridylazo)- resorcinol on functionalized HMS,” J. Hazard. Mater., vol. 201–202, pp. 155– 161, 2012. [42] A. A. Ismail, “A selective optical sensor for antimony based on hexagonal mesoporous structures,” J. Colloid Interface Sci., vol. 317, no. 1, pp. 288– 297, 2008. [43] R. Awual , M. Hasan “Novel conjugate adsorbent for visual detection and removal of toxic lead(II) ions from water,” Microporous and Mesoporous 70 Materials, 196, 261–269, 2014. [44] A. Shahat, E.A. Ali, M.F. El Shahat “Colorimetric determination of some toxic metal ions in post-mortembiological samples, ” Sensors and Actuators B 221, 1027–1034, 2015. [45] K. M. Downard, “J. J. Thomson Goes to America,” J. Am. Soc. Mass Spectrom., vol. 20, no. 11, pp. 1964–1973, 2009. [46] R. Sánchez, J. L. Todolí, C.-P. Lienemann, and J.-M. Mermet, “Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review,” Spectrochim. Acta Part B At. Spectrosc., vol. 88, pp. 104–126, 2013. [47] A. E. Kaifer, “Fundamentals of Analytical Chemistry. Sixth edition (Skoog, Douglas A.; West, Donald M.; Hollar, James F.),” J. Chem. Educ., vol. 69, no. 11, p. A305, 1992. [48] T. Basics and O. Color, “HunterLab Presents The Basics Of Color Perception and Measurement,” Hunt. Lab, 2001. [49] P. Kubelka, “New Contributions to the Optics of Intensely Light-Scattering Materials. Part I,” J. Opt. Soc. Am., vol. 38, no. 5, pp. 448–457, 1948. [50] A. Berger-Schunn, “Practical Color Measurement: A Primer for the Beginner, A reminder for the Expert ”, 1998. [51] G.Kortum, “Reflectance Spectroscopy Principles, Methods, Applications”, 1969. [52] R. M. Boynton, “Human Color Vision”, Optical Soc. of America, 1992. [53] N. I. Ershova and V. M. Ivanov, Anal. Chim. Acta, 1998. [54] M. N. ABBAS, “Diffuse Reflectance Spectroscopic Determination of Phosphate with Applications of Chromaticity Coordinates and Color Temperature,” Anal. Sci., vol. 19, no. 9, pp. 1303–1308, 2003. [55] M. A. Zanjanchi, H. Noei, and M. Moghimi, “Rapid determination of aluminum by UV-vis diffuse reflectance spectroscopy with application of suitable adsorbents,” Talanta, vol. 70, no. 5, pp. 933–939, 2006. [56] K. Ş. Yapisal, P. İ. İ. Le, and M. Akgün, “Kumaş yapisal parametrelerı̇ ı̇le 71 reflektans değerlerı̇ arasindaki ı̇lı̇şkı̇lerı̇n değerlendı̇rı̇lmesı̇,” pp. 93–106, 2012. [57] R. W. G. Hunt, “Measuring Color,” 2nd ed., Ellis Horwood, Chichester, 1991. [58] F. Bunting, “The Color Shop, Color Primer, An Introduction to the History of Color, Color Theory and Color Measurement, ” Light Source Computer Images ınc. USA, 1998. [59] X. Wang, Y. Si, X. Mao, Y. Li, J. Yu, H. Wang, and B. Ding, “Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes.,” Analyst, vol. 138, pp. 5129–36, 2013. [60] J. Kasson and W. Plouffe, ACM Trans. Graphics, 11, 373, 1992. [61] C. Tomasi and R. Manduchi, IEEE, 839, 1998. [62] M. Bicehierini, A. Davalli, R. Sacchetti, S. Paganelli, “Colorimetric analysis of silicone cosmetic prostheses for upper-limb amputees.,” Journal of Rehabilitation Research & Development vol. 42, pp. 655-673, 2005. [63] A. Matsumoto, T. Fukumoto, H. Adachi, H. Watarai, “Electrospray ionization mass spectrometry of metal complexes. Gas phase formation of a binuclear copper(II)±5-Br-PADAP complex,” Analytica Chimica Acta 390, (193-199), 1999. [64] Xıang Ping, Shen Min, Zhuo Xian-yi “Matrix Effects in Liquid Chromatographic-Mass Spectrometric Analysis,” Journal of Instrumental Analysis, 2009. [65] i. Kara, D.Yilmazer, S. Tunali Akar, “Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc(II) and nickel(II) ions from aqueous solutions”, Applied Clay Science 139, 54–63, 2017. [66] E. Katsou, S. Malamis, K. Haralambous “Examination of zinc uptake in a combined system using sludge, minerals and ultrafiltration membranes,” 72 Journal of Hazardous Materials Vol 182, Issues 1-3, Pages 27-38, 2010. [67] D . Mohan, K.P. Singh, Single and multi-component adsorption of cadmium and zinc using activated carbon derivated from bagasse—an agricultural waste, Water Res. 36, 2304–2318, 2002. [68] S. Guo, P. Jiao, Z. Dan, N. Duan, G.Chen, J. Zhang, “Preparation of Larginine modified magnetic adsorbent by one-step method for removal of Zn(II) and Cd(II) from aqueous solution”, Chemical Engineering Journal 317,999–1011, 2017. [69] P. Liang, T.Q. Shi, J. Li, Nanometer-size titanium dioxide separation/ pre concentration and FAAS determination of trace Zn and Cd in water sample, Int. J. Environ. Anal. Chem. 84, 315–321, 2004. [70] A. Ucer, A. Uyanik, S.F. Aygun, Adsorption of Cu(II), Zn(II), Mn(II) and Fe(II) ions by tannic acid immobilized activated carbon, Sep. Purif. Technol. 47, 113–118, 2006. [71] A.K. Meena, G.K. Mishra, P.K. Rai, C. Rajagopal, P.N. Nager Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbents J. Hazard. Mater., 122 (1–2), pp 161–170, 2005. [72] A.K. Bhattacharya , S.N. Mandal , S.K. Dasa, Adsorption of Zn(II) from aqueous solution by using different adsorbents, Chemical Engineering Journal, 123 43–51, 2006. [73] M.I. Albero, J.A. Ortuno, M.S. Garcia, C. Sanchez-Pedreno, R. Exposito, J. Pharm.Biomed. Anal. 29, 779–786., 2002. [74] A.A. Andrew, R. Narayanaswamy, Sens. Actuators B 51 (1998) 368–376. [75] M. Shamsipur, T. poursaberi, M. Hassanisadi, M. Rezapour, F. Nourmohamma-dian, K. Alizadeh, Sens. Actuators B 161 1080–1087, 2012. [76] Q.J. Ma, X.B. Zhang, X.H. Zhao, Y.J. Gong, J. Tang, Spectrochim. Acta A 73 73 687–693., 2009. [77] Z. Wu, Q. Chen, G. Yang, C. Xiao, J. Liu, S. Yang, J.S. Ma, Sens. Actuators B 99 511–515, 2004. [78] S. Rastegarzadeh, V. Rezaei, Sens. Actuators B 129 327–331, 2008. [79] A. Samadi-Maybodi, V. Rezaei, “A new sol–gel optical sensor with nonporous structure fordetermination of trace zinc.,” Sensors and Actuators B 199 418–423, 2014.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/3380
dc.description.abstractThe aim of this work is to develop a ligand-modified mesoporous silica adsorbent for the removal and colorimetric determination of Zn(II) ions from water samples. In this study, mesoporous (monolithic) silica material was synthesized in acidic condition by using tetraethylorthosilicate (TEOS) and non-ionic surfactant Brij 56. The organic ligand 5-Br-PADAP was successfully immobilized onto the mesoporous silica. This adsorbent was characterized by FT-IR, SEM, EDX and BET analysis. The experimental works were carried out by batch method. In adsorption studies several parameters such as pH of solution, initial Zn(II) ion concentration, interfering ions, color optimization and reusability of the adsorbent were optimized. The experimental data showed that the maximum Zn(II) adsorption was possible at pH 8. The maximum adsorption capacity was determined and found to be 18.02 mg/g. Desorption of Zn (II) ions was possible when 0.10 mol/L HCl was used. This adsorbent (5-Br-PADAP-doped silica particles) showed a marked color change from orange to fuschia red in the presence of Zn(II) ion depending on pH value of solution. Color changes of the adsorbent were confirmed by Diffuse Reflectance Spectrometric (DRS) measurements. The colorimetric data was shown the differences in the color hues of the adsorbent phase with increases of Zn(II) concentration. The linear dynamic range for the colorimetric determination of Zn(II) was 5–100 μg/L. The adsorbent showed a high chromogenic selectivity for Zn(II) over other ions with a detection limit of 0.4 μg/L in solution. The relative standard deviation (RSD) for 6 replicate measurements of 10 μg/L zinc was 2.7%. The developed colorimetric method was applied to the extraction and determination of zinc in different certified reference materials and real water samples.tr_TR
dc.description.tableofcontentsİÇİNDEKİLER ÖZET ........................................................................................................................ i ABSTRACT ............................................................................................................ iii TEŞEKKÜRLER ...................................................................................................... v İÇİNDEKİLER ......................................................................................................... vi ŞEKİLLER DİZİNİ ................................................................................................... ix ÇİZELGELER DİZİNİ ............................................................................................. xii SİMGELER VE KISALTMALAR ........................................................................... xiii 1. GİRİŞ.................................................................................................................. 1 2.GENEL BİLGİLER ............................................................................................... 3 2.1. Çinko ve Sağlığa Etkileri ............................................................................... 3 2.2. Metal iyonlarının Sulardan Uzaklaştırılması ................................................. 5 2.3. Sol-jel Yöntemiyle Mezo Gözenekli Silika Sentezi ........................................ 5 2.4. Gözenekli Silika Adsorbentler ve Elde Edilme Yöntemleri ............................ 9 2.4.1. HOM Tipi Monolitik Silika Sentezi ve Kullanım Alanları ........................ 13 2.5. Sol-jel Tekniğinin Analitik Kimya Uygulamaları ........................................... 14 2.5.1. Optik Kimyasal Sensörler ..................................................................... 16 2.6. Literatürde Yer Alan Çalışmalar ................................................................. 20 2.7. Metal İyonlarının Tayin Yöntemleri ............................................................. 21 2.7.1. Atomik Absorpsiyon Spektrometresi (AAS) .......................................... 21 2.7.1.1. Işık Kaynakları ................................................................................ 22 2.7.1.2. Atomlaştırma Teknikleri .................................................................. 23 2.7.1.3. Dalgaboyu seçici ............................................................................ 23 2.7.1.4. Dedektör ......................................................................................... 24 2.7.1.5. Atomik Absorpsiyon Spektroskopisinde Girişimler.......................... 24 2.7.2. İndüktif Eşleşmiş Plazma Kütle Spektrometresi (ICP–MS) ................... 25 vii 2.7.2.1. ICP-MS İle Yapılan Çalışmalarda Karşılaşılan Sorunlar ................. 25 2.7.2.2. Atomik Girişimler ............................................................................ 26 2.7.2.3. Poliatomik Girişimler ....................................................................... 26 2.8. Dağınık Yansıma Spektroskopisi (DRS) ..................................................... 26 2.8.1. Kolorimetrik Paramatereler ................................................................ 28 3. DENEYSEL ÇALIŞMALAR............................................................................... 30 3.1.Reaktifler ..................................................................................................... 30 3.2. Kullanılan Cihazlar...................................................................................... 31 3.3.Deneyin Yapılışı .......................................................................................... 32 3.3.1. Silika Monolitin Sentezi ......................................................................... 32 3.3.2. Silika Monolite 5-Br-PADAP’ın Katkılanması ........................................ 33 3.3.3. Partiküllere Zn(II) İyonlarının Adsorpsiyonu .......................................... 33 4.DENEYSEL SONUÇLAR VE TARTIŞMA.......................................................... 35 4.1. Silika Partiküllerin Karakterizasyonu .......................................................... 35 4.2. 5-Br-PADAP Katkılanmış Silika Partiküllere Zn(II) İyonlarının Adsorpsiyonunda pH Etkisi ................................................................................ 40 4.3. Silika Partiküllere 5-Br-PADAP Katkılama Süresinin Etkisi ......................... 41 4.4. 5-Br-PADAP Katkılanmış Silika Partiküllerin Adsorpsiyonuna Zn(II) Derişiminin Etkisi ............................................................................................... 41 4.5. Silika Partiküllerin Zn(II) Adsorpsiyonuna Zamanın Etkisi .......................... 43 4.6. 5-Br-PADAP Katkılanmış Silika Partiküllerin Tekrar Kullanılabilirliği .......... 43 4.7. Zn(II) Adsorpsiyonuna Yabancı İyonların Etkisi .......................................... 45 4.8. 5-Br-PADAP Katkılı Silika Partiküller ile Zn(II) Adsorpsiyonu Uygulamaları 49 4.8.1. Sertifikalı Referans Maddelerden Zn(II) İyonlarının Adsorpsiyonu ....... 49 4.8.2. Pirinç ve Pirinç Unu Örneğinde Zn(II) Tayini ........................................ 49 4.8.3. Çeşme Suyundan Zn(II) İyonlarının Uzaklaştırılması ........................... 50 viii 4.9. 5-Br-PADAP Katkılı Silika Partiküllerin Zn(II) iyonlarının Adsorpsiyon Kapasitesinin Literatürle Karşılaştırılması.......................................................... 50 4.10. Zn(II) İyonlarının Kolorimetrik ve Görsel Tayini ........................................ 51 4.10.1. Sulu Çözeltide Zn-PADAP Kompleks Oluşum Koşullarının Belirlenmesi ....................................................................................................................... 51 4.11. Zn(II) İyonlarının Kolorimetrik Tayini İçin Silika Partiküllere 5-Br-PADAP Katkılama Süresinin Etkisi ................................................................................. 53 4.12. Zn(II) İyonlarının Kolorimetrik Tayinine Zn(II) Derişiminin Etkisi ............... 54 4.13. Zn(II) İyonlarının Kolorimetrik Tayinine Yabancı İyonların Etkisi .............. 59 4.14. Çeşme Suyunda Zn(II) İyonlarının Kolorimetrik Tayini ............................. 60 4.15. Pirinç ve Pirinç Unu Örneğinden Zn(II) İyonlarının Kolorimetrik Tayini ..... 61 4.16. Zn(II) İyonlarının Kolorimetrik Tayini İçin Analitik Performans Özellikleri .. 61 4.17. 5-Br-PADAP Katkılı Silika Partiküllerin Zn(II) iyonlarının Kolorimetrik Tayinin Literatürle Karşılaştırılması ................................................................... 62 5. SONUÇLAR ..................................................................................................... 64 KAYNAKLAR ........................................................................................................ 66 EKLER ................................................................................................................. 74 ÖZGEÇMİŞ .......................................................................................................... 77tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectSilika partiküller, adsorpsiyon, Zn(II) iyonları, kolorimetrik sensör.tr_TR
dc.title2-(5-Bromo-2-Piridilazo)-5-(Dietilamino) Fenol Katkılanmış Silika Partiküllerin Hazırlanması ve Zn(Iı) İyonlarının Adsorpsiyonu ve Kolorimetrik Tayini İçin Kullanımıtr_TR
dc.title.alternativePreparatıon of 2-(5-Bromo-2-Pyrıdylazo)-5- (Dıethylamıno) Phenol Doped Sılıca Partıcles and Theır Uses for Zn(Iı) Ions Adsorptıon and Colorımetrıc Detectıontr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetBu çalışmanın amacı, su örneklerinden Zn(II) iyonlarının uzaklaştırılması ve kolorimetrik tayini için ligand modifiye edilmiş mezo gözenekli silika adsorbentin geliştirilmesidir. Bu çalışmada, tetraetilortosilikat (TEOS) ve iyonik olmayan yüzey aktif madde Brij 56 kullanılarak asidik ortamda mezo gözenekli (monolitik) silika sentezlenmiştir. Mezo gözenekli silika partiküllere organik ligand 5-Br-PADAP başarıyla immobilize edilmiştir. Bu adsorbent FT-IR, SEM, EDX ve BET analizi ile karakterize edilmiştir. Adsorpsiyon çalışmalarında, çözelti pH'ı, başlangıç Zn(II) iyonu derişimi, engelleme yapan iyonlar, renk optimizasyonu ve adsorbentin tekrar kullanılabilirliği gibi parametreler optimize edilmiştir. Deneysel veriler, maksimum Zn(II) adsorpsiyonunun pH 8'de olduğunu göstermiştir. Maksimum adsorpsiyon kapasitesi belirlenmiş ve 18.02 mg/g olduğu bulunmuştur. Zn(II) iyonlarının desorpsiyonu, 0.10 mol/L HCl kullanıldığı durumda mümkün olmuştur. Bu adsorbent (5-Br-PADAP katkılı silika partiküller), çözeltinin pH değerlerine bağlı olarak Zn(II) iyonlarının varlığında turuncudan fuşya kırmızıya belirgin bir renk değişimi göstermiştir. Adsorbentin renk değişimi Difüze Yansıma Spektrometri (DRS) ölçümleri ile teyit edilmiştir. Kolorimetrik veriler, Zn(II) derişimindeki artış ile adsorbent fazın renk tonlarında fark olduğunu göstermiştir. Zn(II)’nin kolorimetrik tayini için doğrusal çalışma aralığı 5-100 μg/L ve gözlenebilme sınırı 0.4 μg/L’dir. 10 μg/L çinko için 6 tekrarlı bağıl standart sapma (RSD) %2.7 dir. Geliştirilen kolorimetrik yöntem, çinko ekstraksiyonu ve tayini için sertifikalı referans maddelere ve gerçek su numunelerine uygulanmıştır.tr_TR
dc.contributor.departmentKimyatr_TR
dc.contributor.authorID10146863tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster