dc.contributor.advisor | ARIKAN, FEZA | |
dc.contributor.author | SAYIN, IŞILTAN | |
dc.date.accessioned | 2017-04-07T11:34:05Z | |
dc.date.available | 2017-04-07T11:34:05Z | |
dc.date.issued | 2017-04-07 | |
dc.date.submitted | 2016-09-26 | |
dc.identifier.govdoc | 2016D6695 | |
dc.identifier.uri | http://hdl.handle.net/11655/3349 | |
dc.description.abstract | Fractional Fourier Transform (FrFT) is the generalization of the classical Fourier Transform (FT). FrFT can be applied to various fields that have already made use of the FT. FrFT defines the fractional Fourier domains by generalizing the time and frequency domains. In the application fields of FrFT, the system performance can be optimized over the fractional order of the FrFT.
In the diffraction theory, under Fresnel approximations, fields radiated from an aperture can be given in the form of Fresnel Integral (FRI). FRI can be written in terms of FrFT. Radiated fields from the aperture can be computed by employing the fast and accurate computation methods of the FrFT. In this thesis, numerical computation methods of the FrFT are studied and their relation to continuous FrFT is given. FrFT computation methods can be grouped into two categories as fast FrFT (fFrFT) and discrete FrFT (dFrFT). In fFrFT, computation of the convolution operator in the FrFT is evaluated by the Fast Fourier Transform (FFT). In dFrFT method, signal vector to be transformed is multiplied by the fractional power of the Discrete Fourier Transform (DFT) matrix. fFrFT and dFrFT methods assume constant sampling intervals for the signals in their inputs and outputs. If the sampling intervals of the signals are chosen as the assumed intervals, the output samples match the samples of the continuous FrFT. However, if the sampling intervals are not equal to the assumed intervals, angle and phase corrections have to be made in order to get the continuous FrFT samples at the output. In this study, angle and phase corrections needed for the fFrFT method are derived. The performances of the fFrFT and dFrFT methods are compared over their similarities to the continuous FrFT samples. The samples of the continuous FrFT are obtained by the adaptive Gauss-Kronrod (GK) numerical integral computation method. It is observed that the performance of these two methods in the computation of the continuous FrFT samples are close to each other.
In the scope of this thesis, for the first time in the literature, fFrFT method is applied to the evaluation of FRI, by employing the angle and phase corrections. The performance of the FrFT methods in evaluation of the diffraction integrals are compared with their difference to the Rayleigh-Sommerfeld Integral (RSI), which is valid in a broader region than the FRI. RSI, is computed with the GK method. It is observed that the diffraction patterns of fFrFt and dFrFT are similar and they are close to the values of the GK method in the Fresnel region. Through the outside of the Fresnel region, it is observed that the methods compute different values than that of the GK method. The computation speeds of the methods are compared by employing the computation times of the diffraction patterns. It is observed that fFrFT method is ten times faster than the dFrFT method; and a thousand times faster than the GK method. In the scope of this thesis, with the derived angle and phase corrections for the fFrFT, a fast and accurate method for evaluation of FRI for different sampling intervals is developed.
In electromagnetics, radiation integrals have to be solved in order to obtain the fields radiated from a current source. In this study, electric field vector components radiated from a current source, under Fresnel approximation, are given in terms of the FrFT. The electromagnetic fields are given in terms of vector potentials, and derivatives with respect to observation coordinates are evaluated. The obtained integral forms are written in terms of FrFT. Employing the numerical FrFT methods, fast and efficient computation of the electromagnetic field vector components are performed. In the scope of this thesis, first time in the literature, the computation of the electromagnetic fields radiated from a current source in the vector form is performed by employing the FrFT.
In this thesis, the developed method is applied to the computation of radiated fields for the dipole, cross-dipole and aperture antennas. It is observed that, employing the developed method in the Fresnel region, vector components of the radiated electromagnetic fields from the current source can be obtained rapidly and efficiently. | tr_TR |
dc.description.tableofcontents | İÇİNDEKİLER Sayfa
ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
TEŞEKKÜR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
İÇİNDEKİLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
ŞEKİLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
ÇİZELGELER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
SİMGELER VE KISALTMALAR . . . . . . . . . . . . . . . . . . . . . . . . . . xv
SÖZLÜK DİZİNİ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
1. GİRİŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. MAXWELL DENKLEMLERİ . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3. KESİRLİ FOURIER DÖNÜŞÜMÜ . . . . . . . . . . . . . . . . . . . . . . . . 23
4. KESİRLİ FOURIER DÖNÜŞÜMÜNÜ AYRIK HESAPLAMA YÖNTEMLERİ . . . . . . . . . . 31
4.1. Hızlı Kesirli Fourier Dönüşümü (HKFD) . . . . . . . . . . . . . . . . . 31
4.1.1. Sürekli KFD ile HKFD İlişkisi . . . . . . . . . . . . . . . . . . . . 35
4.2. Ayrık Kesirli Fourier Dönüşümü (AKFD) Yöntemleri . . . . . . . . . . . 38
4.2.1. S yöntemi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2. Dikgen İzdüşüme Dayalı AKFD . . . . . . . . . . . . . . . . . . . . . 43
4.2.3. AKFD yöntemleri ile bulunan AFD özvektörlerinin karşılaştırılması . . 47
4.2.4. Sürekli KFD ile AKFD arasındaki ilişki . . . . . . . . . . . . . . . 47
4.3. KFD’yi Ayrık Hesaplama Yöntemlerinin Başarım Karşılaştırması . . . . . 49
5. FRESNEL İNTEGRALİ-KESİRLİ FOURIER DÖNÜŞÜMÜ İLİŞKİSİ . . . . . . . . . . . 55
6. ZAMAN UZAMINDA SONLU FARKLAR YÖNTEMİ İLE IŞIMA DESENLERİ . . . . . . . . 86
7. KIRINIM DESENLERİNİN HESAPLANMASI İÇİN KULLANICI ARAYÜZÜ . . . . . . . . 94
8. YÜZEY AKIM KAYNAĞINDAN YAYILAN VEKTÖR ALANLARIN KFD İLE HESAPLANMASI . . 98
9. SONUÇ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 112
KAYNAKLAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
EKLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
EK-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
EK-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
ÖZGEÇMİŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 | tr_TR |
dc.language.iso | tur | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | tr_TR |
dc.subject | Kesirli Fourier Dönüşümü, Maxwell Denklemleri, Işıma, Kırınım | tr_TR |
dc.title | KESİRLİ FOURIER DÖNÜŞÜMÜNÜN MAXWELL DENKLEMLERİNE UYGULANMASI | tr_TR |
dc.title.alternative | APPLICATION OF FRACTIONAL FOURIER TRANSFORM TO MAXWELL'S EQUATIONS | tr_TR |
dc.type | info:eu-repo/semantics/doctoralThesis | tr_TR |
dc.description.ozet | Kesirli Fourier Dönüşümü (KFD), klasik Fourier Dönüşümünün (FD) genel bir halidir. KFD, FD'nin kullanıldığı bir çok alanda kullanılabilir. KFD, zaman ve frekans uzamlarını genelleştirerek kesirli Fourier uzamlarını tanımlar. KFD'nin uygulandığı alanlarda sistemlerin başarımı bu kesir değeri üzerinden eniyilenebilir.
Kırınım teorisinde bir açıklıktan yayılan alanlar Fresnel yaklaştırması altında Fresnel İntegrali (FRİ) biçiminde verilir. FRİ, KFD cinsinden ifade edilebilir. Hızlı ve güvenilir KFD hesaplama yöntemleri kullanılarak açıklık antenden yayılan alanlar Fresnel bölgesinde bulunabilir. Bu tez kapsamında, sayısal KFD hesaplama yöntemleri incelenerek sürekli KFD ile olan ilişkileri verilmiştir. KFD hesaplama yöntemleri Hızlı Kesirli Fourier Dönüşümü (HKFD) ve Ayrık Kesirli Fourier Dönüşümü (AKFD) olarak sınıflandırılabilir. HKFD'de, KFD işlecinin içerdiği alt `chirp' evrişim işlecinin hesaplanmasında Hızlı FD (FD) kullanılır. AKFD yönteminde, sinyal vektörü, Ayrık FD (AFD) matrisinin kesirli kuvveti ile çarpılır. HKFD ve AKFD yöntemleri giriş ve çıkışlarındaki örnekleme aralıklarının sabit olduğunu varsayar. Örnekleme aralıkları yöntemlerin varsaydığı şekilde seçildiğinde çıkış örnekleri sürekli KFD örneklerini verir. Ancak, örnekleme aralıkları farklı seçildiğinde sürekli KFD örneklerine ulaşmak için açı ve faz düzeltmeleri uygulanmalıdır. Bu çalışmada, farklı örnek aralıkları için HKFD yöntemine uygulanması gereken düzeltmeler elde edilmiş, HKFD ve AKFD yöntemlerinin başarımları, sürekli KFD örnekleri ile aralarındaki fark hesaplanarak incelenmiştir. Sürekli KFD örnekleri uyarlanır Gauss-Kronrod (GK) sayısal integral hesaplama yöntemi ile elde edimiştir. Yöntemlerin sürekli KFD örneklerini elde etme başarımlarının birbirine yakın olduğu sonucuna ulaşılmıştır.
Bu tez kapsamında, literatürde ilk defa, HKFD yöntemi, açı ve faz düzeltmeleri uygulanarak, Fresnel kırınım deseninin hesaplanmasında kullanılmıştır. KFD yöntemleri ile hesaplanan kırınım desenlerinin başarımları, FRİ'ye göre daha geniş bir bölgede geçerli olan Rayleigh-Sommerfeld İntegralinin (RSİ) değerleri ile karşılaştırılmıştır. RSİ, GK yöntemi ile hesaplanmıştır. Yöntemlerin hızları, kırınım desenlerini hesaplama süreleri üzerinden karşılaştırılmıştır. Yapılan benzetimler, sonucunda, HKFD ve AKFD yöntemleri ile elde edilen kırınım desenlerinin birbirine çok benzediği ve Fresnel bölgesinde RSİ'ya çok yakın olduğu, Fresnel bölgesinden uzaklaştıkça RSİ'dan farklı değerler vermeye başladığı gözlenmiştir. Yöntemlerin hızları karşılaştırıldığında, HKFD yönteminin AKFD yöntemine göre yaklaşık on kat; GK yöntemine göre yaklaşık bin kat daha hızlı olduğu görülmüştür. Bu tez kapsamında, HKFD yöntemine uygulanan açı ve faz düzeltmeleri ile, farklı örnekleme aralıklarında, FRİ'nin örneklerini hızlı ve güvenilir bir şekilde hesaplayan bir yöntem sunulmuştur. MATLAB ortamında bir kullanıcı arayüzü geliştirilmiş farklı kaynak dağılımı, açıklık boyu, gözlem uzaklığı seçimlerinin kırınım desenine olan etkisinin hızlı bir şekilde incelenmesine olanak sağlanmıştır.
Elektromanyetikte bir akım kaynağından yayılan alanların bulunmasında ışıma integralleri çözülmelidir. Bu çalışmada, bir akım yoğunluğundan yayılan elektrik alan vektör bileşenleri Fresnel yaklaştırması altında KFD ile ifade edilmiştir. Elektromanyetik alanlar, vektör potansiyeli cinsinden ifade edilip, gözlem koordinatlarına göre olan türevler alındıktan sonra, elde edilen integraller Fresnel yaklaştırması altında KFD cinsinden yazılmıştır. Sayısal KFD hesaplama yöntemleri kullanılarak akım yoğunluğundan yayılan elektromanyetik alan vektörleri hızlı ve verimli bir şekilde elde edilmiştir. Bu tez kapsamında, literatürde ilk kez KFD kullanılarak bir akım kaynağından yayılan elektromanyetik alanların vektör biçiminde hesaplanması gerçekleştirilmiştir.
Bu tez kapsamında geliştirilen özgün yöntem ile dipol, çapraz dipol ve açıklık antenlerden yayılan elektromanyetik alan vektörleri hesaplanmış ve Fresnel bölgesinde akım kaynağından yayılan elektromanyetik alanların vektör bileşenlerinin hızlı ve verimli hesaplanabildiği gösterilmiştir. | tr_TR |
dc.contributor.department | Elektrik –Elektronik Mühendisliği | tr_TR |
dc.contributor.authorID | TR182373 | tr_TR |