Show simple item record

dc.contributor.advisorDENİZLİ, Adil
dc.contributor.authorKOCA ESENTÜRK, Meltem
dc.date.accessioned2017-03-06T08:11:01Z
dc.date.available2017-03-06T08:11:01Z
dc.date.issued2017
dc.date.submitted2017-01-27
dc.identifier.citation[1] Peters T., All about Albumin: Biochemistry, Genetics, and Medical Applications, San Diego, CA: Academic Press, 1996. [2] Miller, W.G., Bruns, D.E., Hortin, G.L., Sandberg, S., Kristin, M.A., Matthew J.M., Itoh, Y., Lieske, J.C., Current Issues in Measurement and Reporting of Urinary Albumin Excretion, Clinical Chemistry, 55, 124–138, 2009. [3] Shaikh, A., Seegmiller, J.C., Borland, T.M., Burns, B.E., Ladwig, P.M., Singh, R.J., Kumar, R., Larson, T.S., Lieske, J.C., Comparison between Immunoturbidimetry, Size-Exclusion Chromatography and LC-MS to Quantify Urinary Albumin, Clinical Chemistry, 54, 9 1504–1510, 2008. [4] Wayne, D.C., Lucinda, M.H., David, J.N., Leileata M., Disease-Dependent Mechanisms of Albuminuria, American Journal of Physiology-Renal Physiology, 295, 1589–1600, 2008. [5] Linksde Jong, P.E., Curhan, G.C., Screening, Monitoring, and Treatment of Albuminuria: Public Health Perspectives, Journal of the American Society Nephrology, 17, 2120–2126, 2006. [6] Mura-Galelli, M.J., Voegel, J.C., Behr, S., Bres, E.F., Schaaf, P., Adsorption/ Desorption of Human Serum Albumin on Hydroxyapatite: A Critical Analysis of The Langmuir Model, Proceedings of the National Academy of Sciences of the United States of America, 88, 5557– 5561, 1991. [7] Hara F, Shiba K., Nonspecific Binding of Urinary Albumin on Preservation Tube, Japanese Journal of Clinical Chemistry, 32(Suppl 1), 28–29, 2003. [8] Wulff, G., Poll, H.G., Enzyme-analogue Built Polymers, 23. Influence of the Structure of the Binding Sites on the Selectivity for Racemic Resolution, Makromolecular Chemistry and Physics, 188, 4, 741-748, 1987. [9] Velasco-Garcia, M. N., Mottram, T., Biosensor Technology Addressing Agricultural Problems, Biosystems Engineering, 84,1, 1-12, 2003. [10] Anthony, T., Principles of Bacterial Detection: Biosensors, Recognition Receptorsand Microsystems, New York: Springer Science and Business Media, 2008. [11] Özlem, H., Biyosensör Hazırlamada Enzim Kaynağı Olarak Değerlendirilmek Üzere Bazı Bitkisel Dokuların İncelenmesi, Yüksek Lisans Tezi, Trakya Üniversitesi, Edirne, 2008. [12] Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species, Chemical Reviews, 108, 2, 462-493, 2008. [13] Doumas B.T., Peters, T., Serum and Urine Albumin: A Progress Report on Their Measurement and Clinical Significance. Clinica Chimica Acta, 258, 3– 20, 1997. [14] Andersen, N., Albumin Calcium Association at Different Ph, As Determined By Potentiometry. Clinical Chemistry, 23, 11, 2122-2126, 1977. [15] Fogh-Andersen, N., Albumin/Calcium Association at Different Ph, as Determined by Potentiometry, Clinical Chemistry, 23, 11, 2122-2126, 1977. [16] Berthil, H.C., Prinsen, M.T., Monique, G.M., Albumin Turnover: Experimental Approach and its Application in Health And Renal Diseases, Clinica Chimica Acta, 347, 1 –14, 2004. [17] Sviridov, D., Drake, S.K., Hortin, G.L, Reactivity of Urinary Albumin (Microalbumin) Assays With Fragmented or Modified Albumin, Clinical Chemistry, 54, 61– 68, 2008. [18] Clavant, S.P., Osicka, T.M., Comper, W.D., Albuminuria: Its Importance in Disease Detection, Laboratory Medicine, 38, 35-38, 2007. [19] Paloheimo L., Pajari-Backas M., Pitkänen E., Evaluation of an Immunoturbidimetric Microalbuminuria Assay, Journal of Clinical Chemistry and Clinical Biochemistry, 25, 889-892, 1987. [20] Yamaguchi, T., Amano, E., Kamino, S., Umehara, S., Yanaihara, C., Fujita, Y., Spectrophotometric Determination of Urinary Protein with osulfophenyfluorone-metal complex, Analytical Sciences, 21, 1237–1240, 2005. [21] Owen, W.E., Roberts, W. L., Performance characteristics of an HPLC assay for urinary albumin, American Journal of Clinical Pathology, 124, 219–225, 2005. [22] Qin, Q.P., Peltola, O. and Pettersson, K., Time-resolved Fluorescence Resonance Energy Transfer Assay for Point-of-Care Testing of Urinary AlbumClinical Chemistry, 49, 1105–1113, 2003. [23] Zhao, L., Lin, J.M., Li, Z., Comparison and Development of Two Different Solid Phase Chemiluminescence ELISA for The Determination of Albumin in Urine, Analytica Chimica Acta, 541, 197–205, 2005. [24] Bessonova, E.A., Kartsova, L.A., Shmukov, A.U., Electrophoretic Determination of Albumin in Urine using on-line Concentration Techniques, Journal of Chromatography, 1150, 1/2, 332–338, 2007. [25] Mark´o, L., Moln´ar, G.A., Wagner, Z., Koszegi, T.Z., Matus, Moh´as, Kuzma, M.M., Szij´art´o, I. A., Wittmann, I. Orvosi Hetilap, 149, 59–67, 2008. [26] Liang, A.H., Huang, Y.J., Jiang, Z.L., A Rapid and Sensitive Immunoresonance Scattering Spectral Assay for Microalbumin., Clinica Chimica Acta, 383, 73–77, 2007. [27] Jiang, Z., Huang, Y., Liang, A., Pan, H. and Liu, Q. Biosens, Bioelectron, 224, 1674–1678, 2009. [28] Fatoni, A., Numnuam, A., Kanatharana, P., Limbut, W. and Thavarungkul, P. A Novel Molecularly İmprinted Chitosan–Acrylamide, Graphene, Ferrocene Composite Cryogel Biosensor Used To Detect Microalbumin, Analyst, 139, 6160-6167, 2014. [29] Jen-Tsai Liu a, Po-Shen Lin, Yue-Ming Hsin, Jang-Zern Tsai, Wen-Yih Chen. Surface Plasmon Resonance Biosensor for Microalbumin Detection: Journal of the Taiwan Institute of Chemical Engineers, 42, 696–700. 2011. [30] Rasooly, A., Analysis I Biosensors, Encyclopedia of Dairy Science, 85-93, 2002. [31] McGlennen, R.C., Miniaturization Technologies for Molecular Diagnostics, Clinical Chemistry, 47, 3, 393-402. 2001. [32] Peter, C., Meusel, F., Grawe, A., Cammann, K., Borchers, T. Optical DNAensor Chip for Real-time Detection of Hybridization Events, Fresenius Journal of Analytical Chemistry, 371, 120-127, 2001. [33] Çağlarırmak, N., Hepçimen, A.Z., Ağır Metal Toprak Kirliliğinin Gıda Zinciri ve İnsan Sağlığına Etkisi, Akademik Gıda, 8, 2, 31-35, 2010. [34] Ertürk, G., Denizli, A., Nanobiyesensörler. Afinite Temelli Biyosensörler – 2 Yeni Yaklaşımlar, (eds: Denizli, A.,), Kukla Kırtasiye Bilgisayar ve Malz. Tic. Ltd. Şti., Ankara, 1-19, 2016. [35] Hibbert, D.B., Introduction to Electrochemistry, London, Macmillan, 1993. [36] Puzyr, A.P., Pozdnyakova I.O., Bondar, V.S., Design of a Luminescent Biochip with Nanodiamonds and Bacterial Luciferase, Physics Solid State, 46, 761-763, 2004. [37] Wang, Y., Zhang, X., Zhang, H., Lu, Y., Huang, H., Dong, X., Chen, J., Dong, J., Yang, X., Hang, H. and Jiang, T., Coiled-Coil Networking Shapes Cell Molecular Machinery, Molecular Biology of the Cell 23, 19, 3911-3922, 2012. [38] Wood, R.W., On A Remarkable Case of Uneven Distribution of Light in A Diffraction, Proceedings of the Physical Society of London, 18, 1, 269-275 1902. [39] Wood, R.W., XLII. On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum, Philosophical Magazine, 4, 21, 396-402, 1902. [40] Kretchmann, E., Reather, H., Z., Radiative Decay of Non Radiative Surface Plasmons Excited by Light, 2135-2136, 1968. [41] Liedberg, B., Nylander, C., Lunström, I., Surface Plasmon Resonance for Gas Detection and Biosensing, Sensors Actuators, 4, 299-304, 1983. [42] Kawazumi, H., Gobi, V., Ogino, K., Maeda, H., Miura, N., Compact Surface Plasmon Resonance (SPR) Immunosensor Using Multichannel for Simultaneous Detection of Small Molecule Compounds, Sensors and Actuators B: Chemical, 108, 791–796, 2005. [43] Kawazumi, H., Gobi, V., Ogino, K., Maeda, H., Miura, N., Compact Surface Plasmon Resonance (SPR) Immunosensor Using Multichannel for Simultaneous Detection of Small Molecule Compounds, 108, 1-2, 791-796, 2005. [44] Rodriguez-Mozaz, S., Reder, S., Lopez de Alda, M., Gauglitz, G. ve Barceló, D., Simultaneous Multi-Analyte Determination of Estrone, Isoproturon and Atrazine in Natural Waters by the River Analyser (RIANA), An Optical Immunosensor, Biosens Bioelectron, 19, 7, 633-640, 2004. [45] Tschmelak, J., Proll, G. ve Gauglitz, G., Optical Biosensor for Pharmaceuticals, Antibiotics, Hormones, Endocrine Disrupting Chemicals and Pesticides in Water: Assay Optimization Process for Estrone As Example, Talanta, 65, 313–323, 2005. [46] Goldman, E.R., Clapp, A.R., Anderson, G.P., Uyeda, H.T., Mauro, J.M., Medintz, I.L., Mattoussi, H., Multiplexed Toxin Analysis Using Four Colors of Quantum Dot Fluororeagents, Analytical Chemitry, 76, 684–688, 2004. [47] Sequeira, M., Bowden, M., Minogue, E., Diamond, D., Towards autonomous environmental monitoring systems, Talanta, 56, 355–363, 2002. [48] Suzuki, H., Microfabrication of Chemical Sensors and Biosensors for Environmental Monitoring, Materials Science and Engineering, 12, 55–61, 2000. [49] Rodriguez-Mozaz, S., Lopez de Alda, M.J. ve Barceló, D. Biosensors as Useful Tools for Environmental Analysis and Monitoring, Analytical and Bioanalytical Chemistry, 386, 1025-1041, 2006. [50] Bange, A., Halsall, H.B., Heineman, W.R., Microfluidic Immunosensor Systems, Biosensors and Bioelectronics, 20, 2488–2503, 2005. [51] Çaktü, K., Kolesterol Baskılanmış Eş-Boyutlu Poli(GMA-MAT) Mikrokürepoli(HEMA) Kriyojel Kompozit Sistemlerinin Hazırlanması, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2009. [52] Alocilja, E.C., Radke, S.M., Market Analysis of Biosensors for Food Safety, Biosensors and Bioelectronics,18, 841–846, 2003. [53] Tothill, I.E., Biosensors Developments and Potential Applications in the Agricultural Diagnosis Sector, Computers and Electronics in Agriculture, 30, 205–218, 2001. [54] Kroger, S., Piletsky, S., Turner, A.P.F., Biosensors for Marine Pollution Research, Monitoring and Control, Marine Pollution Bulletin, 45, 24–34, 2002. [55] Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T., O’Kennedy, R., Advances in Biosensors for Detection of Pathogens in Food and Water, Enzyme and Microbial Technology, 32, 3–13, 2003. [56] Mauriz, E., Calle, A., Abad, A., Montoya, A., Hildebrandt, A., Barceló, D., Lechuga, L.M., Determination of Carbaryl in Natural Water Samples by A Surface Plasmon Resonance Flow-Through Immunosensor, Biosensors and Bioelectronics, 21, 2129–2136, 2006. [57] Rich, R.L., Myszka, D.G., Advances in Surface Plasmon Resonance Biosensor Analysis, Current Opinion in Biotechnology, 11, 54–61, 2000. [58] Glazier, S.A., Campbell, E.R., Campbell, W.H., Construction and Characterization of Nitrate Reductase-Based Amperometric Electrode and Nitrate Assay of Fertilizers and Drinking Water, Analytical Chemistry, 70, 1511–1515, 1998. [59] Behnisch, P.A., Hosoe, K., Sakai, S-i., Bioanalytical Screening Methods for Dioxins and Dioxin-Like Compounds — A Review of Bioassay/Biomarker Technology, Environment International, 27, 413–439, 2001. [60] Iqbal, S.S., Mayo, M.W., Bruno, J.G., Bronk, B.V., Batt, C.A., Chambers, J.P., A Review of Molecular Recognition Technologies for Detection of Biological Threat Agents, Biosensors and Bioelectronics,15, 549–578, 2000. [61] Wood, RW., On a Remarkable Case of Uneven Distribution of Light in A Diffraction Grating Spectrum, Philysophical Magazine, 4, 396-402, 1902. [62] Schasfoort R.B.M., Tudos A.J., (eds), Handbook of Surface Plasmon Resonance, The Royal Society of Chemistry, Cambridge, UK, 2008. [63] Liedberg, B., Nylander, C., Lundstrom, I., Surface Plasmon Resonance for Gas Detection and Biosensing, Sensors and Actuators, 4, 29-304, 1983. [64] Komiyama, M., Takeuchıi T., Mukawa, T., Asanuma, H., Molecular Imprinting from Fundamentals to Applications, Wiley-VCH, New York, USA, 2003. [65] Wulff, G., Poll, H.G., Enzyme-analogue Built Polymers, 23. Influence of the Structure of the Binding Sites on the Selectivity for Racemic Resolution, Makromolecular Chemistry and Physics, 188, 4, 741-748, 1987.. [66] Mosbach, K., Ramström, O., The Emerging Technique of Molecular Imprinting and its Future Impact on Biotechnology, Nature Biotechnology, 14, 163-170, 1996. [67] Rao, T.P., Daniel, S., Gladis, J.M., Tailored Materials for Preconcentration or Separation of Metals by Ion-imprinted Polymers for Solid-phase Extraction (IIP-SPE), Trends in Analytical Chemistry, 23, 28-35, 2004. [68] Piletsky, S. A., Alcock, S., Turner, A.P.F., Molecular Imprinting: at the edge of the third Millennium, Trends Biotechnol, 19, 9-12, 2001. [69] Osman, B., Miyoglobin Tayinine Yönelik Moleküler Bakılanmış Yüzey Plazmon Rezonans Biyosensör Hazırlanması, Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2011. [70] Türkoğlu, E.A. Yüzey Plazmon Rezonans Temelli Antibadi Sensörlerin Hazırlanması, Yüksek Lisans Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2010. [71] Nakamura, C., Hasegawa, M., Nakamura, N., Miyake, J., Rapid and Specific Detection of Herbicides Using A Self-Assembled Photosynthetic Reaction Center from Purple Bacterium on an SPR Chip, Biosensors and Bioelectronics, 18, 599-603, 2003. [72] Miura N., Sasaki, M., Gobi, K.V., Kataoka, C., Shoyama, Y., Highly Sensitive And Selective Surface Plasmon Resonance Sensor for Detection of SubPpb Levels of Benzo[A]Pyrene by Indirect Competitive İmmunoreaction Method, Biosensors and Bioelectronics, 18, 7, 953-959, 2003. [73] Strong, A., Stimpson, D.I., Bartholomew, D.U., Jenkins, T.F., Elkind, J.L., Detection of Trinitrotoluene (TNT) Extracted From Soil Using A Surface Plasmon Resonance (SPR)-based Sensor Platform. SPIE, 3710, 362-372, 1999. [74] Oh, B.K., Kim, Y.K., Bae, Y.M., Lee, W.H., Choi, J.W., Detection of Escherichia Coli O157, H7 Using İmmunosensor Based on Surface Plasmon Resonance, Journal of Microbiology and Biotechnology, 12, 780- 786, 2002. [75] Taylor, A.D., Ladd, J., Yu, Q., Chen, S., Homola, J., Jiang, S., Quantitative And Simultaneous Detection of Four Foodborne Bacterial Pathogens with A Multi-Channel SPR Sensor, Biosensors and Bioelectronics, 22, 752-758, 2006. [76] Lotierzo, M., Henry, O.Y.F., Piletsky, S., Tothill, I., Cullen, D., Kania, M., Hock, B., Turner, A.P.F., Surface Plasmon Resonance Sensor for Domoic Acid Based on Grafted Imprinted Polymer, Biosensors and Bioelectronics, 20, 145-152, 2004. [77] Uzun, L., Say , R., Ünal, S., Denizli, A., Production of Surface Plasmon Resonance Based Assay Kit for Hepatitis Diagnosis, Biosensors and Bioelectronics, 24, 2878–2884, 2009. [78] Ladd, J., Boozer, C., Yu, Q., Chen, S., Homola, J., Jiang, S., DNA-directed Protein Immobilization on Mixed Self-Assembled Monolayers Via A Streptavidin Bridge, Langmuir, 20, 8090-8095, 2004. [79] Stigter, E.C., Jong, G.J., Van Bennekom, W.P., An Improved Coating for The Isolation and Quantitation of Interferon-Gamma in Spiked Plasma Using Surface Plasmon Resonance (SPR), Biosensors and Bioelectronics, 21, 474-482, 2005. [80] Bokken, G.C.A.M., Corbee, R.J., van Knapen, F., Bergwerff, A.A., Immunochemical Detection of Salmonella Group B, D. and E Using an Optical Surface Plasmon Resonance Biosensor, FEMS Microbiology Letters, 222, 75–82, 2003. [81] Jiang, T., Zhao, L., Chu, B., Feng, Q., Yan, W., Lin, J-M., Molecularly Imprinted Solid-Phase Extraction for the Selective Determination of 17β- Estradiol in Fishery Samples with High Performance Liquid Chromatography, Talanta, 78, 442-447, 2009. [82] Dong, J., Gao, N., Peng, Y., Guo, C., Lv, Z., Wang, Y., Zhou, C., Ning, B., Liu, M., Gao, Z., Surface Plasmon Resonance Sensor for Profenofos Detection Using Molecularly Imprinted Thin Film as Recognition Element, Food Control, 25, 543-549, 2012. [83] Wulff, G., Poll, H.G., Enzyme-analogue Built Polymers, 23. Influence of the Structure of the Binding Sites on the Selectivity for Racemic Resolution, Makromolecular Chemistry and Physics, 188, 4, 741-748, 1987. [84] Sönmezler, M., Kuartz Kristal Mikroterazi (QCM) Temelli Histidin Sensörler, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2011. [85] Haupt, K., Molecularly imprinted polymers: The Next Generation, Analytical Chemistry, 75, 376A-383A, 2003. [86] Mayers, A.G., Mosbach, K., Molecularly Imprinted Polymers: Useful Materials for Analytical Chemistry, Trends in Analytical Chemistry, 16, 321– 332, 1997. [87] Rao, T.P., Daniel, S., Gladis, J.M., Tailored Materials for Preconcentration or Separation of Metals by Ion-İmprinted Polymers for Solid-Phase Extraction (IIP-SPE), Trends in Analytical Chemistry, 23, 28-35, 2004. [88] Haupt, K., Ye, L., Molecularly Imprinted Polymers as Antibody and Receptor Mimics for Assays, Sensors and Drug Discovery, Analytical and Bioanalytical Chemistry, 378, 1887-1897, 2004. [89] Yavuz, H., Karakoc, V., Turkmen, D., Say, R., Denizli, A., Synthesis of Cholesterol Imprinted Polymeric Particles, International Journal of Biological Macromolecules, 41, 8-15, 2006. [90] Owens, P.K., Karlsson, L., Lutz, E.S.M., Andersson, L.I., Molecular İmprinting for Bio- And Pharmaceutical Analysis, Trends in Analytical Chemistry, 18, 146–154, 1999. [91] Ansell, D.J., Molecularly Imprinted Polymers for The Enantioseparation of Chiral Drugs, Advanced Drug Delivery Reviews, 57, 1809–1835, 2005. [92] Schweitz, L., Sp´egel, P., Nilsson, S., Approaches to Molecular İmprinting Based Selectivity in Capillary Electrochromatography, Electrophoresis, 22, 4053–4063, 2001. [93] Liu, C., Lin, C., An Insight into Molecularly Imprinted Polymers for Capillary Electrochromatography, Electrophoresis, 25, 3997–4007, 2004. [94] Liu, Z., Zheng, C., Yan, C., Gao, R., Molecularly Imprinted Polymers as a Tool for Separation in CEC, Electrophoresis, 28, 127–136, 2007. [95] Kempe, M., Mosbach, K., Separation of Amino Acids, Peptides and Proteins on Molecularly Imprinted Stationary Phases. J Chrom. A, 691, 1/2, 317-323, 1995. [96] Anderson, L., Muller, R., Vlatakis, G., Mosbach, K., Mimics of The Binding Sites of Opioid Receptors Obtained by Molecular Imprinting of Enkephalin and Morphine. Proc. Natl. Acad. Sci, 92, 11, 4788-4792, 1995. [97] Dickert, F.L., Hayden, O., Bioimprinting of Polymers and Sol-Gel Phases “Selective Detection of Yeasts with Imprinted Polymers”. Anal. Chem., 74, 6, 1302-1306, 2002. [98] Katz, A., Davis, M. E., Molecular Imprinting of Bulk, Microporous Silica, Nature, 403, 6767, 286-289, 2000. [99] Parmpi, P., Kofinas, P., Biomimetic Glucose Recognition Using Molecularly Imprinted Polymer Hydrogels. Biomaterials, 25, 10, 1969-1973, 2004. [100] Yılmaz, E., Haupt, K., Mosbach, K., The Use of Immobilized Templates-A New Approach in Molecular Imprinting. Angew. Chem. Int. Ed., 39, 12, 2115-2118, 2000. [101] Burow, N., Minoura, N., Molecular Imprinting: Synthesis Of Polymer Particles With Antibody-Like Binding Characteristics For Glucose Oxidase. Biochem. Biophys. Res.Commun., 227, 2, 419-422, 1996. [102] Bossi, A., Piletsky, S.A., Piletska, E.V., Righetti, P.G, Turner, A.P.F., SurfaceGrafted Molecularly Imprinted Polymers for Protein Recognition. Anal. Chem., 73, 21, 5281-5286, 2001. [103] Guo, T. Y., Xia, Y. Q., Hao, G. J., Song, M. D., Zhang, B.H., Adsorptive Seperation of Hemoglobin by Molecularly Imprinted Polymers. Biomaterials, 25, 5905-5912, 2004. [104] Nicholls, I.A., Rosengren, J.P., Molecular Imprinting of Surfaces. Bioseperations, 10, 301-305, 2002. [105] Ki, C.D., Oh, C., Oh, S-G., Chang, J.Y., The Use of A Thermally Reversible Bond for Molecular Imprinting of Silica Spheres. J. Am. Chem. Soc., 124, 14838-14839, 2002. [106] Li, Z., Ding, J., Day, M., Tao, Y., Molecularly Imprinted Polymeric Nanospheres by Diblock Copolymer Self-Assembly. Macromol., 39, 2629- 2636, 2006. [107] Kempe, H., Kempe, M., Development and Evaluation of Spherical Molecularly İmprinted Polymer Beads, Analytical Chemistry, 78, 3659-3666, 2006. [108] Ciardelli, G., Borrelli, C., Silvestri, D., Cristallini, C., Barbani, N., Giusti, P., Supported Imprinted Nanospheres for the Selective Recognition of Cholesterol., Biosens Bioelectron, 15, 12, 2329-2338, 2006. [109] Garipcan, B., Denizli, A., A Novel Affinity Support Material for the Separation of Immunoglobulin G from Human Plasma, Macromolecular Bioscience, 2, 135-144, 2002. [110] Colthup, N.B., Daly, L.H., Wiberley, S.E., Introduction to Infrared and Raman Spectroscopy, 3rd ed, Academic Press, New York, 1990. [111] Lin-Vein, D., Colthup, N, Fateley, W.G., Grasselli, J., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, Kaliforniya, 1991. [112] Chou, P.C., Rick, J., Chou, T.C., C-reative Protein Thin-Film Molecularly İmprinted Polymers Formed Using a Micro-Contact Approach. Analytica Chimica Acta, 542, 20-25, 2005. [113] Lin, H.Y., Hsu, C.Y., Thomas, J.L., Wang, S.E., Chen, H.C., Chou, T.C. The Micro-Contact Imprinting of Proteins: The Effect of Cross-Linking Monomers for Lysozyme, Ribonuclease A And Myoglobin. Biosensensors & Bioelectronics, 15, 534-543, 2006. [114] Sun, Y., Yan, F., Yang, W., Sun, C., Multilayered Construction of Glucose Oxidase and Silica Nanoparticles on Au Electrodes Based on Layer-ByLayer Covalent Attachment. Biomaterials, 27, 4042-4049, 2006. [115] Frederix, F., Bonroy, K., Reekmans, G., Laureyn, W., Campitelli, A., Abramov, M.A., Dehaen, W., Maes, G., Reduced Nonspecific Adsorption on Covalently Immobilized Protein Surfaces Using Poly(Ethylene Oxide) Containing Blocking Agents, The International Journal of Biochemistry, 30, 1, 67-74, 2004. [116] Lu, Z., Li, C.M., Z, Q., Bao, Q., Cui, X., Covalently Linked DNA/protein Multilayered Film for Controlled DNA Release. J. Coll. Inter. Sci., 314, 80- 88, 2007. [117] Duan, L., He, Q., Yan, X., Cui, Y., Wang, K., Li, J., Hemoglobin Protein Hollow Shells Fabricated Through Covalent Layer-By-Layer Technique. Biochem. Biophys. Res. Commun., 354, 357-362, 2007. [118] Zhang, Q.Y., Tao, M.L., Shen, W.D., Zhou, Y.Z., Ding, Y., Ma, Y., Zhou, W.L. Immobilization of L-Asparaginase on the Microparticles of the Natural Silk Sericin Protein and İts Characters, Biomaterials, 25, 17, 3751-3759, 2004. [119] Christiaens, P., Vermeeren, V., Wenmackers, S., Daenen, M., Haenen, K., Nesladek, M., vandeVen, M., Ameloot, M., Michiels, L., Wagner, P., EDCMediated DNA Attachment to Nanocrystalline CVD Diamond Films. Biosens. Bioelectron., 22, 170-177, 2006. [120] D’Souza, S.F., Godbole, S.S., Immobilization of Invertase on Rice Husks Using Polyethyleneimine. J. Biochem. Biophys. Methods, 52, 59-62, 2002. [121] Choi, H. J., Kimb, N. H., Chung, B. H., Seong, G. H., Micropatterning of Biomolecules on Glass Surfaces Modified with Various Functional Groups Using Photoactivatable Biotin. Anal. Biochem., 347, 60-66, 2005. [122] Betancor, L., Lopez-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, C., Fernandez-Lafuente, R., Guisan, J. M., Different Mechanisms of Protein İmmobilization on Glutaraldehyde Activated Supports: Effect of Support Activation and Immobilization Conditions, Enzyme and Microbial Technology, 39, 4, 877-882, 2006. [123] Avseenko, N.V., Morozova, T.Y., Ataullakhanov, F.I., Immobilization of Proteins in Immunochemical Microarrays Fabricated by Electrospray Deposition, Analytical Chemistry, 73, 6047-6052, 2001. [124] Gan, S.H., Yang, P., Yang, W.T., Photoactivation of Alkyl C-H and Silanization: A Simple and General Route to Prepare High-Density Primary Amines on Inert Polymer Surfaces for Protein Immobilization. Biomacromolecules, 10, 1238–1243, 2009. [125] Graf, N., Yegen, E., Lippitz, A., Treu, D., Wirth, T., Unger, W.E.S. Optimization of Cleaning and Amino-Silanization Protocols for Si Wafers to Be Used as Platforms for Biochip Microarrays by Surface Analysis (XPS, ToF-SIMS and NEXAFS spectroscopy), Surface and Interface Analysis, 40, 180-183, 2008. [126] Qin, M., Hou, S., Wang, L.K., Feng, X.Z., Wang, R., Yang, Y.B., Wang, C., Yu, L., Shao, B., Qiao, M.Q. Two Methods for Glass Surface Modification and Their Application in Protein İmmobilization, Colloids and Surfaces B: Biointerfaces, 60, 243–249, 2007. [127] Haupt, K., Belmont, A.S. Handbook of Biosensors and Biochips: Molecularly İmprinted Polymers as Recognition Elements in Sensors, Ed.: John Wiley and Sons,Ltd. Chapter 14, 8-9, 2007. [128] Piacham, T., Josell, A., Arwin, H., Prachayasittikul, V., Ye, L.. Molecularly Imprinted Polymer Thin Films On Quartz Crystal Microbalance Using A Surface Bound Photo-Radical Initiator. Analytica Chimica Acta, 536, 191– 196, 2005. [129] Lin, L.P., Huang, L.S., Lin, C.W., Lee, C.K., Chen, J.L., Hsu, S.M., Lin, S.. Determination of Binding Constant of DNA-binding Drug to Target DNA by Surface Plasmon Resonance Biosensor Technology. Current Drug Target, 5, 61-72, 2005. [130] Li, X., Husson, S.M., Two-Dimensional Molecular Imprinting Approach to Produce Optical Biosensor Recognition Elements. Langmuir, 22, 9658- 9663, 2006b. [131] Umpleby, R.J., Baxter, S.C., Chen,Y., Shah, R.N., Shimizu, K.D., Characterization of Molecularly İmprinted Polymers with the Langmuir– Freundlich Isotherm. Analytical Chemistry, 73, 4584–4591, 2001. [132] Wei, X., Samadi, A., Husson, S.M., Synthesis and Characterization of Molecularly Imprinted Polymers for Chromatographic Separations. Separation Science and Technology, 40, 109–129, 2005. [133] Lin, L.P., Huang, L.S., Lin, C.W., Lee, C.K., Chen, J.L., Hsu, S.M., Lin, S. Determination of Binding Constant of DNA-binding Drug to Target DNA by Surface Plasmon Resonance Biosensor Technology, Current Drug Target, 5, 61-72, 2005. [134] Zhang, L., Cheng, G., Fu, C. Molecular Selectivity of Tyrosine-Imprinted Polymers Prepared by Seed Swelling and Suspension Polymerization. Polymer International, 51, 8, 687-692, 2002. [135] Patricia, A. Zunszain, Ghuman, J., Komatsu, T., Tsuchida, E. and Curry, S., Crystal Structural Analysis of Human Serum Albümin Complexed with Hemin and Fatty Acid, BMC Structural Biology, 3, 6, 1-9, 2003.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/3249
dc.description.abstractHuman serum albumin (HSA) is the most abundant protein in the blood. Enlargement of the pores in the glomeruli and remarkable amount of plasma proteins’ leakage into urine is caused by the kidney damages. A certain amount of leaked HSA (in spot urine 0-20 mg/L) is defined as microalbumin. Since the increase in the amount of microalbumin is a sign of some important diseases, early identification is very important for the diagnosis. Devices which convert biological response to electrical signals are defined as ‘’Biosensors’’. Biosensors are analytical devices that contain biological recognition elements and physicochemical transducers in their bodies. Molecular imprinted polymers was unified with the transducers through major developments in the field of biosensors and interactions between analyte and MIP can be converted into a processable signals. In this sense, surface plasmon resonance (SPR) based optical devices have a great potential. In this study, it was aimed to prepare SPR based nanosensor using molecular imprinting technique for microalbumin detection in urine. In the first step, NMethacryloyl-(L)-Leucine Methyl Ester (MALM) monomer having capability of interaction with HSA to create cavities was synthesized by reacting of L-Leucine methyl ester with methacrloyl Chloride. To define optimum ratio between template HSA molecule and MALM monomer, HSA was mixed with different ratios of MALM monomer and optimum ratio was determined by using UV-visible spectrophotometer instrument. Nanosensor preparation studies were realized according to the optimized ratio conditions. Nanosensors are prepared in two ways by micro-contact method with HSA imprinted [PEDMALM-HSA] (MIP) and non imprinted [PEDMALM] (NIP) nanosensor preparation and by attaching HSA imprinted [PEDMALM-HSA] (MIP) and non imprinted [PEDMALM] (NIP) nanoparticles to the chip gold surface respectively. For this specified purpose, HSA imprinted poly(N-Methacryloyl-(L)-Leucine Methyl Ester-Human Serum Albumin) [PEDMALM-HSA] (MIP) nanofilm was synthesized onto the allyl mercaptan modified gold chip surface by micro-contact method. Mixture prepared from specific proportions of MALM monomer, crosslinker ethylene dimethacrylate (EDMA) and initiator 2,2'-azobis (isobutyronitrile) (AIBN) was poured (20 μL) onto the SPR gold sensor surface and after then HSA immobilized glass slides was inserted onto the poured mixture by pressing to form stamped structure. Special cavities for the target HSA protein was formed when the mixture put under the UV light for 4 hours. For control experiments nonimprinted nanofilm preparation was performed in the same conditions without adding target HSA protein. SPR biosensors prepared by HSA imprinted [PEDMALM-HSA] (MIP) and non imprinted [PEDMALM-HSA] (NIP) nanofilms were characterized by FTIR-ATR, Atomic force microscope (AFM), Contact angle (CA), Ellipsometer measurements. Surface rougness measurements were obtained by Atomic force microscopy (AFM) method and images showed that roughness of HSA imprinted [PEDMALMHSA] (MIP) and non imprinted [PEDMALM] (NIP) nanofilms was estimated as 3.64 and 2.47 nm respectively. Rougness difference between HSA imprinted [PEDMALM-HSA] and non imprinted [PEDMALM-HSA] (MIP) nanofilms show that imprinting process of HSA molecules was performed successfully. Film thickness of HSA imprinted [PEDMALM-HSA] (MIP) and non imprinted [PEDMALM] (NIP) nanofilms was estimated by ellipsometry measurements and recorded as 95±4.9 and 89.9±4.9 nm for imprinted and non imprinted nanofilms respectively. Wettability studies was performed by contact angle measurements. Increasing contact angle values for unmodified gold chip surface (80°±0.73), HSA imprinted [PEDMALM-HSA] (MIP) (55.2°±2.24) and HSA non imprinted [PEDMALM] (NIP) (61.5±4.63°) nanofilms show that imprinting process enabled hydrophilicity increment. In the second part of the study to work in a a targeted concentration range [PEDMALM-HSA] (MIP) nanoparticles were synthesized by a two-phase miniemulsion polymerization method. The first aqueous phase PHASE I was prepared by dissolving of PVA (95 mg), SDS (15 mg) and NaHCO3 (12 mg) in 5.0 mL deionized water. The second phase PHASE II was prepared by dissolving of PVA (50 mg) and SDS (50 mg) in 100 mL of deionized water. Prepared MALM:HSA pre-complex (0.15; 0.015 mmol) was dissolved in a crosslinker, ethylene glycol dimethacrylate (EDMA; 4.8 mmol) to form oil phase. The oil phase was slowly added to the first aqueous phase. In order to obtain mini-emulsion, the mixture was homogenized at 25 000 rpm by a homogenizer. After homogenization, mixture was added to the PHASE II. Then, initiators, sodium bisulfite (125 mg) and ammonium persulfate (125 mg), were added into the solution. Polymerization was continued for 24 h at 40°C. Besides this, for control experiment, the non-imprinted [PEDMALM] (NIP) nanoparticles were synthesized by applying same procedure with imprinted nanoparticles except addition of template HSA molecules. Size distrubution of the prepared nanoparticles was characterized by zeta size and scanning electron microscopy measurements. Averaged size distrubution value of the HSA imprinted [PEDMALM-HSA] (MIP) and nonimprinted [PEDMALM] (NIP) nanoparticles was estimated as 63 and 55 nm respectively. Because of low polydispersity index values for imprinted and nonimprinted nanoparticles (PDI:0.138; PDI:0.113) homogeneous average nanoparticle size distrubition was attained. Average size of HSA imprinted [PEDMALM-HSA] (MIP) nanoparticles was determined as 60-65 nm by Scanning electron microscopy measurements. Target protein HSA imprinted [PEDMALM-HSA] (MIP) and non imprinted [PEDMALM] (NIP) nanoparticles were attached to the chip surface by dropping 5 µl of the prepared particles diluted 100 times with distilled water onto the chip surface which was already cleaned with ethyl alcohol and dried in a vacuum oven and put under the UV light for 2 hours. Prepared HSA imprinted [PEDMALM-HSA] (MIP) and non imprinted [PEDMALM] (NIP) nanoparticles attached SPR nanosensors were characterized by FTIR-ATR, atomic force microscope (AFM) method, contact angle (CA), ellipsometer measurements. Surface rougness measurements were obtained by Atomic force microscopy (AFM) and images showed that roughness values of HSA imprinted [PEDMALM-HSA] (MIP) and non imprinted [PEDMALM] (NIP) nanoparticles were estimated as 1.61 and 1.28 nm respectively. Rougness difference between HSA imprinted [PEDMALM-HSA] (MIP) and non imprinted [PEDMALM] (NIP) nanoparticles attached nanoparticles show that imprinting process of HSA molecules was performed successfully. Thickness of HSA imprinted [PEDMALMHSA] (MIP) and non imprinted [PEDMALM] (NIP) nanoparticles attached biosensor chips was estimated by ellipsometry measurements and recorded as 118.4 ±0.3 and 116 ± 0.3 nm for imprinted and non imprinted nanofilms respectively. Wettability studies was performed by contact angle measurements. Increasing contact angle values for unmodified gold chip surface (80°±0,73), HSA imprinted [PEDMALM-HSA] (MIP) (67.3°±2.24) and HSA non imprinted [PEDMALM] (NIP) (84.5°±4.63) biosensors show that imprinting process enabled hydrophilicity increment. Detection of HSA by micro-contact method was performed in the 1,5-300 nM concentration range and by nanoparticles in the 0,15-500 nM concentration range for HSA solutions prepared with 50 mM pH= 7.4 phosphate buffer solution. Desorption studies were carried out by using 0.05 M NaCI solution. Adsorption analyses for the HSA spiked artificial urine and plasma samples which was prepared in pH=7.4 phosphate buffer were examined. Selectivity studies of [PEDMALM-HSA] (MIP) and [PEDMALM] (NIP) SPR biosensors for HSA determination were investigated by using different protein samples such as hemoglobine and transferrine. Higher selectivity factor was estimated for the [PEDMALM-HSA] (MIP) nanosensor which was prepared by micro-contact method than nanoparticles attached [PEDMALM-HSA] (MIP) nanosensor as k’=5.02, k’=4.25 for Hb and HTR respectively. Limit of detection value for the nanoparticles was estimated lower (LOD: 0.7 pM) than the nanofilms prepared by micro-contact method (LOD: 8.8 pM). As a result nanoparticles attached biosensors more sensitive than the nanofilm attached ones. Repeatability experiments of [PEDMALM-HSA] nanosensor prepared by microcontact method and nanoparticles attached nanosensor was performed five times (5 times) by using HSA solutions (300 nM and 500 nM respectively) and reflectance values were measured. Stability studies were performed for the 3 times in the three months periods with four repeatibity. To determine the kinetic and adsorption models of interactions between [PEDMALM-HSA] (MIP) nanofilm attached SPR nanosensor and HSA solution, four different adsorption models named Scatchard, Langmuir, Freundlich and Langmuir-Freundlich (LF) were employed. Langmuir adsorption model was found most applicable model for this affinity system and results showed that affinity regions on the surface of [PEDMALM-HSA] (MIP) SPR nanosensor for the HSA template were homogeneously distributed and have monolayer structure. To determine the kinetic and adsorption models of interactions between [PEDMALM-HSA] (MIP) nanoparticles attached SPR nanosensor and HSA solution, four different adsorption models named Scatchard, Langmuir, Freundlich and Langmuir-Freundlich (LF) were employed. Langmuir adsorption model was found most applicable model for the low concentratins of HSA while Freundlich adsorption model fits for the high HSA concentrations in this affinity system and results showed that affinity regions on the surface of [PEDMALM-HSA] (MIP) SPR nanoensor for the HSA template were homogeneously distributed and have monolayer structure for the low concentrations. As a result, albumin level are used as a Biomarker for the 0-20 mg/L (0-300 nM) concentration range. Nanosensor prepared by the micro-contact method was estimated more selective for the HSA determination than the nanosensor prepared by the nanoparticle attached method. Although the nanosensor prepared by the micro-contact method can be used successfully for the estimation of HSA in the 1.5-300 nM concentration level, it can not detect precisely 0-300 nM HSA concentration level. So it has been required to use nanoparticles to detect HSA with lower concentration limits. Selective and sensitive nanosensor prepared by micro-contact method can be used for HSA detection by real time measurement, no need labeling, low cost and ease of miniaturization when compared with the other methods and nanoparticles can be used for the detection of lower HSA concentrations. This study will contribute to the literatüre by comparing the advantages of the nanofilm attached nanosensor prepared by micro-contact method and nanoparticles attached nanosensor.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectYüzey plazmon rezonans (SPR), moleküler baskılanmış polimer (MIP), mikro-temas, nanopartikül, mikroalbümintr_TR
dc.titleMikroalbümin Tayini için SPR Temelli Nanosensörlerin Hazırlanmasıtr_TR
dc.title.alternativePreparation of SPR Based Nanosensors for Mıcroalbumin Assaystr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetİnsan Serum albümini (HSA) kanda en çok bulunan proteindir. Böbreklerde oluşan hasarlar, glomerüllerdeki gözeneklerin genişlemesine ve fazla miktarda plazma proteinin idrara sızmasına neden olmaktadır. İdrara sızan HSA’nın belli bir miktarı (spot idrarda 0-20 mg/L) mikroalbümin olarak tanımlanmaktadır. Mikroalbümin miktarının artması önemli bazı hastalıkların habercisi olduğundan erken tayini oldukça önemlidir. Biyolojik cevabı elektriksel sinyallere dönüştüren cihazlara “Biyosensör” denir. Biyosensörler bünyesinde biyolojik tanıma elemanı bulunduran ve fizikokimyasal dönüştürücü içeren analitik cihazlardır. Biyosensör alanındaki büyük gelişmelerle birlikte moleküler baskılanmış polimerler (MIP) dönüştürücülerle birleştirilmiş ve tayin edilecek analitle MIP arasındaki etkileşim işlenilebilir bir sinyale dönüştürülmüştür. Bu anlamda yüzey plazmon rezonans (SPR) temelli optik cihazlar büyük bir potansiyele sahiptirler. Bu çalışmada, idrarda mikroalbümin tayinine yönelik moleküler baskılama tekniği kullanarak, SPR temelli nanosensör hazırlanması amaçlanmıştır. İlk aşamada HSA ile etkileşerek boşluklar oluşturabilecek fonksiyonel N-Metakriloil-(L)-Lösin Metil Ester (MALM) monomeri, L-Lösin metil esterin metakroil klorür ile reaksiyonu sonucu elde edilmiştir. Optimum kalıp molekül HSA ve MALM monomeri oranı, HSA’nin farklı oranlarda MALM monomeri ile etkileştirilmesiyle UV-görünür bölge spektrofotometre cihazıyla tespit edildi ve optimize edilen bu orana göre nanosensör hazırlama çalışmaları gerçekleştirildi. Nanosensör hazırlama çalışmaları sırasıyla Mikro-temas yöntemi ile HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanosensörlerin hazırlanması ve HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanopartiküllerin sentezlenmesiyle iki farklı şeklinde gerçekleştirildi. Belirlenen amaç doğrultusunda mikro-temas yöntemiyle alil merkaptan ile modifiye edilmiş SPR sensör yüzeyinde, HSA baskılanmış poli(N-Metakriloil-(L)-Lösin Metil Ester-insan serum albümin) [PEDMALM-HSA] (MIP) nanofilm sentezlenmiştir. Belirli oranlarda hazırlanan MALM monomeri, çapraz bağlayıcı etilen dimetakrilat (EDMA) ve başlatıcı 2,2’-azobis(izobütironitril) (AIBN)’den oluşan karışımından 20 µl alınarak damlatılan SPR sensör çip yüzeyine, lam üzerinde hazırlanan kalıp protein HSA baskılanmıştır. Bu preparatın UV ışık altında 4 saat bekletilmesiyle hedef protein HSA’ya ait özel boşluklar oluşturulmuştur. Kontrol deneyleri için hedef protein HSA eklemeden aynı koşullarda baskılanmamış nanofilm hazırlanmıştır. HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanofilmler ile hazırlanan SPR nanosensörlerin karakterizasyon çalışmaları FTIRATR, Atomik kuvvet mikroskobu (AFM), Temas açısı (CA) ve Elipsometre ölçümleri ile gerçekleştirilmiştir. AFM ölçümlerinden elde edilen pürüzlülük değerleri HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanoflimler için sırasıyla 3,64 ve 2,47 nm olarak bulunmuştur. HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanofilmlerin pürüzlülük değerleri arasındaki farklılık HSA moleküllerinin başarılı bir şekilde baskılandığını göstermektedir. HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanofilmlerin film kalınlığı elipsometri ile ölçülmüş ve sırasıyla 89,9±6,3 ve 95,0±4,9 olarak bulunmuştur. Islanabilirlik çalışmaları temas açısı ölçümü ile gerçekleştirilmiştir. Modifiye edilmemiş altın yüzey için (80°±0,73), HSA baskılanmış [PEDMALM-HSA] (MIP) nanofilm yüzey için (55,2°±2,24) ve HSA baskılanmamış [PEDMALM] (NIP) nanofilm yüzey için (61,5°±4,63) elde edilen artan temas açısı değerleri baskılama işleminin hidrofilikliği arttırdığını göstermektedir. Hedeflenen derişim aralığına inmek amacıyla çalışmanın ikinci kısmında HSA baskılanmış [PEDMALM-HSA] (MIP) nanopartiküller iki fazlı miniemülsiyon polimerizasyon yöntemiyle sentezlenmiştir. Faz I; PVA (95 mg), SDS (15 mg) ve NaHCO3’ın (12 mg) 5,0 mL deiyonize su içinde çözülmesiyle hazırlanmıştır. Faz II; PVA (50 mg) ve SDS’in (50 mg) 100 mL deiyonize suda çözülmesiyle hazırlanmıştır. Hazırlanan MALM:HSA ön-kompleksi (0.15:0,015 mmol), çapraz bağlayıcı monomer EDMA ile (4,8 mmol) karıştırılarak yağ fazı elde edilmiştir. Yağ fazı faz I’e yavaşça eklenmiştir. Karışım, 25.000 rpm de homojenizatörde homojenize edildikten sonra Faz II ile karıştırılmıştır. Sodyum bisülfit (50 mg) ve amonyum persülfat (100 mg) başlatıcısının eklenmesinden sonra polimerizasyon işlemi 40°C de 24 saat süreyle gerçekleştirilmiştir. Kontrol deneyleri için HSA baskılanmadan hazırlanan nanopartiküller aynı koşullarda sentezlenmiştir. Sentezlenen nanopartiküller, zeta boyut analizi ve taramalı elektron mikroskobu (SEM) ile karakterize edilmiştir. HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanopartiküllerin ortalama boyut dağılımı zeta boyut analizörü ile ölçülerek sırasıyla 63 ve 55 nm şeklinde bulunmuştur. Baskılanmış ve baskılanmamış nanopartiküller için düşük polidispersite indeks değerleri (PDI:0,138; PDI:0,113) nanopartiküllerin ortalama boyut dağılımının homojen olduğunu göstermektedir. HSA baskılanmış [PEDMALM-HSA] (MIP) nanopartiküllerin büyüklüğü ise taramalı elektron mikroskobu ile ölçülmüş ve ortalama boyutları 60-65 nm aralığında bulunmuştur. Etil alkol ile temizlenerek vakumlu etüvde kurutulan altın çip yüzeyine sentezlenen HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanopartiküllerin 100 kat seyreltilmiş çözeltisinden 5 µl damlatılarak UV ışık altında 2 saat bekletilmesiyle nanopartiküllerin çip yüzeyine tutturulması sağlanmıştır. HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanopartiküllerin tutturulmasıyla hazırlanan SPR nanosensörler FTIR-ATR, atomik kuvvet mikroskobu (AFM), temas açısı (CA) elipsometre ölçümleri ile karakterize edilmiştir. AFM ölçümlerinden elde edilen pürüzlülük değerleri HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanopartiküller için sırasıyla 1,61 ve 1,28 nm olarak bulunmuştur. HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanopartiküllerin pürüzlülük değerleri arasındaki farklılık HSA moleküllerinin başarılı bir şekilde baskılandığını göstermektedir. HSA baskılanmış [PEDMALM-HSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) nanopartiküllerin film kalınlığı elipsometri ile ölçülmüş ve sırasıyla 118,4±0,3 ve 116,7±0,3 nm olarak bulunmuştur. Islanabilirlik çalışmaları temas açısı ölçümü ile gerçekleştirilmiştir. Modifiye edilmemiş altın yüzey için (80°±0,73), HSA baskılanmış [PEDMALM-HSA] (MIP) nanofilm yüzey için (67,3°±2,24) ve HSA baskılanmamış [PEDMALM] (NIP) nanofilm yüzey için (84,5°±4,63) elde edilen artan temas açısı değerleri baskılama işleminin hidrofilikliği arttırdığını göstermektedir. HSA tayini için mikro-temas yönteminde 1,5-300 nM derişim aralığında çalışılırken, nanopartiküller ile HSA tayininde 0,15-500 nM gibi daha geniş derişim aralığında 50 mM pH 7,4 fosfat tamponunda hazırlanan HSA çözeltileri ile çalışılmıştır. Desorpsiyon ajanı olarak 0,05 M NaCl çözeltisi kullanılmıştır. Farklı derişimlerde yapay plazma ve yapay idrar örneklerin de HSA analizleri fosfat tamponu ortamında (pH 7,4) gerçekleştirilmiştir. Hazırlanan HSA baskılanmış [PEDMALMHSA] (MIP) ve baskılanmamış [PEDMALM] (NIP) sensörlerin seçiciliğini göstermek için yarışmacı ajan olarak seçilen farklı proteinler ile (hemoglobintransferrin) çalışmalar yapılmıştır. Mikro-temas yöntemiyle hazırlanan HSA baskılanmış [PEDMALM-HSA] (MIP) nanosensörün tespit edilen seçicilik faktörünün, nanopartikül tutturularak hazırlanan [PEDMALM-HSA] (MIP) nanosensörün seçicilik faktöründen büyük olduğu tespit edilmiş ve Hb ve HTR için değerleri sırasıyla k’= 5,02, k’= 4,25 olarak hesaplanmıştır. Mikro-temas ve nanopartiküllerle hazırlanan nanosensörlerin tayin limitleri (LOD) sırasıyla 8,8 ve 0,7 pM olarak hesaplanmıştır. Mikro-temas ve nanopartiküllerle hazırlanan nanosensörlerin tekrar kullanılabilirlik çalışmaları sırasıyla 300 ve 500 nM çözeltiler için arka arkaya 5 kez yapılarak reflektans değerleri ölçülmüştür. Kararlılık çalışması için aynı nanosensör çip 3 aylık periyotlarla 3 kez 4 tekrarlı HSA analizi için kullanılmış ve SPR nanosensörlerin kararlılığı gösterilmiştir. HSA baskılanmış [PEDMALM-HSA] (MIP) nanofilm tutturulmuş SPR nanosensör ile HSA arasındaki etkileşimlerin kinetik ve adsorpsiyon modelini belirlemek amacıyla dört farklı izoterm modeli uygulanmıştır: Scatchard Langmuir; Freundlich ve Langmuir-Freundlich (LF) modelleri. Langmuir adsorpsiyon izoterm modelinin bu afinite sistemine en uygun model olduğu görülmüş ve sonuçlar HSA baskılanmış [PEDMALM-HSA] (MIP) nanosensördeki HSA’e afinite gösteren bağlanma bölgelerinin homojen olarak dağıldığını ve tek tabakalı yapı oluşturduğunu göstermektedir. HSA baskılanmış [PEDMALM-HSA] (MIP) nanopartikül tutturulmuş SPR nanosensör ile HSA arasındaki etkileşimlerin kinetik ve adsorpsiyon modelini belirlemek amacıyla dört farklı izoterm modeli uygulanmıştır: Scatchard, Langmuir; Freundlich ve Langmuir-Freundlich (LF) modelleri. SPR sensörün düşük derişimlerde Langmuir adsorpsiyon izoterm modeline, yüksek derişimler de ise Freundlich adsorpsiyon izoterm modeline uygun olduğu görülmüştür. Sonuçlar HSA baskılanmış [PEDMALM-HSA] (MIP) nanosensördeki HSA’e afinite gösteren bağlanma bölgelerinin homojen olarak dağıldığını ve düşük derişimler için tek tabakalı yapı oluşturduğunu göstermektedir. Sonuç olarak 0-20 mg/L (0-303 nM) aralığındaki HSA derişimi mikroalbümin işaretçisi olarak kabul edilmektedir. Mikro-temas yöntemiyle hazırlanan nanosensörün HSA tayininde nanopartiküllerle hazırlanan nanosensöre göre daha seçici olduğu tespit edildi. Mikro-temas yöntemiyle hazırlanan nanosensör 1,5-300 nM konsantrasyon aralığındaki HSA tayininde başarılı bir şekilde kullanılabilmesine rağmen 0-300 nM konsantrasyon aralığındaki HSA yı tam olarak tayin edemediği için daha düşük tayin limitlerine inilmesine gerek duyulmuştur. Böylece nanopartiküler kullanılarak hazırlanan nanosensör ile daha düşük tayin limitine inilmiştir. Mikro-temas yöntemiyle hazırlanan nanosensör HSA tayinini, seçici, duyarlı, herhangi bir işaretlemeye ihtiyaç duymadan, diğer yöntemlere göre, düşük maliyet, hızlı ve gerçek zamanlı yapabilmektedir ve nanopartiküllerde düşük HSA derişimlerinin tayininde kullanılabilmektedir. Bu çalışmanın HSA tayinine yönelik, mikro-temas yöntemiyle nanofilm tututurularak hazırlanan nanosensörün ve nanopartikül tutturularak hazırlanan nanosensörün avantajlarının karşılaştırılması bakımından, literatüre katkı sağlayacağı düşünülmektedir.tr_TR
dc.contributor.departmentKimyatr_TR
dc.contributor.authorID10141622tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record