dc.identifier.citation | [1] Peters T., All about Albumin: Biochemistry, Genetics, and Medical
Applications, San Diego, CA: Academic Press, 1996.
[2] Miller, W.G., Bruns, D.E., Hortin, G.L., Sandberg, S., Kristin, M.A., Matthew
J.M., Itoh, Y., Lieske, J.C., Current Issues in Measurement and Reporting of
Urinary Albumin Excretion, Clinical Chemistry, 55, 124–138, 2009.
[3] Shaikh, A., Seegmiller, J.C., Borland, T.M., Burns, B.E., Ladwig, P.M.,
Singh, R.J., Kumar, R., Larson, T.S., Lieske, J.C., Comparison between
Immunoturbidimetry, Size-Exclusion Chromatography and LC-MS to
Quantify Urinary Albumin, Clinical Chemistry, 54, 9 1504–1510, 2008.
[4] Wayne, D.C., Lucinda, M.H., David, J.N., Leileata M., Disease-Dependent
Mechanisms of Albuminuria, American Journal of Physiology-Renal
Physiology, 295, 1589–1600, 2008.
[5] Linksde Jong, P.E., Curhan, G.C., Screening, Monitoring, and Treatment of
Albuminuria: Public Health Perspectives, Journal of the American Society
Nephrology, 17, 2120–2126, 2006.
[6] Mura-Galelli, M.J., Voegel, J.C., Behr, S., Bres, E.F., Schaaf, P., Adsorption/
Desorption of Human Serum Albumin on Hydroxyapatite: A Critical Analysis
of The Langmuir Model, Proceedings of the National Academy of Sciences
of the United States of America, 88, 5557– 5561, 1991.
[7] Hara F, Shiba K., Nonspecific Binding of Urinary Albumin on Preservation
Tube, Japanese Journal of Clinical Chemistry, 32(Suppl 1), 28–29, 2003.
[8] Wulff, G., Poll, H.G., Enzyme-analogue Built Polymers, 23. Influence of the
Structure of the Binding Sites on the Selectivity for Racemic Resolution,
Makromolecular Chemistry and Physics, 188, 4, 741-748, 1987.
[9] Velasco-Garcia, M. N., Mottram, T., Biosensor Technology Addressing
Agricultural Problems, Biosystems Engineering, 84,1, 1-12, 2003.
[10] Anthony, T., Principles of Bacterial Detection: Biosensors, Recognition
Receptorsand Microsystems, New York: Springer Science and Business
Media, 2008.
[11] Özlem, H., Biyosensör Hazırlamada Enzim Kaynağı Olarak
Değerlendirilmek Üzere Bazı Bitkisel Dokuların İncelenmesi, Yüksek Lisans
Tezi, Trakya Üniversitesi, Edirne, 2008.
[12] Homola, J., Surface Plasmon Resonance Sensors for Detection of
Chemical and Biological Species, Chemical Reviews, 108, 2, 462-493,
2008.
[13] Doumas B.T., Peters, T., Serum and Urine Albumin: A Progress Report on
Their Measurement and Clinical Significance. Clinica Chimica Acta, 258, 3–
20, 1997.
[14] Andersen, N., Albumin Calcium Association at Different Ph, As Determined
By Potentiometry. Clinical Chemistry, 23, 11, 2122-2126, 1977.
[15] Fogh-Andersen, N., Albumin/Calcium Association at Different Ph, as
Determined by Potentiometry, Clinical Chemistry, 23, 11, 2122-2126, 1977.
[16] Berthil, H.C., Prinsen, M.T., Monique, G.M., Albumin Turnover: Experimental
Approach and its Application in Health And Renal Diseases, Clinica Chimica
Acta, 347, 1 –14, 2004.
[17] Sviridov, D., Drake, S.K., Hortin, G.L, Reactivity of Urinary Albumin
(Microalbumin) Assays With Fragmented or Modified Albumin, Clinical
Chemistry, 54, 61– 68, 2008.
[18] Clavant, S.P., Osicka, T.M., Comper, W.D., Albuminuria: Its Importance in
Disease Detection, Laboratory Medicine, 38, 35-38, 2007.
[19] Paloheimo L., Pajari-Backas M., Pitkänen E., Evaluation of an
Immunoturbidimetric Microalbuminuria Assay, Journal of Clinical Chemistry
and Clinical Biochemistry, 25, 889-892, 1987.
[20] Yamaguchi, T., Amano, E., Kamino, S., Umehara, S., Yanaihara, C., Fujita,
Y., Spectrophotometric Determination of Urinary Protein with osulfophenyfluorone-metal
complex, Analytical Sciences, 21, 1237–1240,
2005.
[21] Owen, W.E., Roberts, W. L., Performance characteristics of an HPLC assay
for urinary albumin, American Journal of Clinical Pathology, 124, 219–225,
2005.
[22] Qin, Q.P., Peltola, O. and Pettersson, K., Time-resolved Fluorescence
Resonance Energy Transfer Assay for Point-of-Care Testing of Urinary
AlbumClinical Chemistry, 49, 1105–1113, 2003.
[23] Zhao, L., Lin, J.M., Li, Z., Comparison and Development of Two Different
Solid Phase Chemiluminescence ELISA for The Determination of Albumin in
Urine, Analytica Chimica Acta, 541, 197–205, 2005.
[24] Bessonova, E.A., Kartsova, L.A., Shmukov, A.U., Electrophoretic
Determination of Albumin in Urine using on-line Concentration Techniques,
Journal of Chromatography, 1150, 1/2, 332–338, 2007.
[25] Mark´o, L., Moln´ar, G.A., Wagner, Z., Koszegi, T.Z., Matus, Moh´as,
Kuzma, M.M., Szij´art´o, I. A., Wittmann, I. Orvosi Hetilap, 149, 59–67,
2008.
[26] Liang, A.H., Huang, Y.J., Jiang, Z.L., A Rapid and Sensitive
Immunoresonance Scattering Spectral Assay for Microalbumin., Clinica
Chimica Acta, 383, 73–77, 2007.
[27] Jiang, Z., Huang, Y., Liang, A., Pan, H. and Liu, Q. Biosens, Bioelectron,
224, 1674–1678, 2009.
[28] Fatoni, A., Numnuam, A., Kanatharana, P., Limbut, W. and Thavarungkul, P.
A Novel Molecularly İmprinted Chitosan–Acrylamide, Graphene, Ferrocene
Composite Cryogel Biosensor Used To Detect Microalbumin, Analyst, 139,
6160-6167, 2014.
[29] Jen-Tsai Liu a, Po-Shen Lin, Yue-Ming Hsin, Jang-Zern Tsai, Wen-Yih
Chen. Surface Plasmon Resonance Biosensor for Microalbumin Detection:
Journal of the Taiwan Institute of Chemical Engineers, 42, 696–700. 2011.
[30] Rasooly, A., Analysis I Biosensors, Encyclopedia of Dairy Science, 85-93,
2002.
[31] McGlennen, R.C., Miniaturization Technologies for Molecular Diagnostics,
Clinical Chemistry, 47, 3, 393-402. 2001.
[32] Peter, C., Meusel, F., Grawe, A., Cammann, K., Borchers, T. Optical DNAensor
Chip for Real-time Detection of Hybridization Events, Fresenius
Journal of Analytical Chemistry, 371, 120-127, 2001.
[33] Çağlarırmak, N., Hepçimen, A.Z., Ağır Metal Toprak Kirliliğinin Gıda Zinciri
ve İnsan Sağlığına Etkisi, Akademik Gıda, 8, 2, 31-35, 2010.
[34] Ertürk, G., Denizli, A., Nanobiyesensörler. Afinite Temelli Biyosensörler – 2
Yeni Yaklaşımlar, (eds: Denizli, A.,), Kukla Kırtasiye Bilgisayar ve Malz. Tic.
Ltd. Şti., Ankara, 1-19, 2016.
[35] Hibbert, D.B., Introduction to Electrochemistry, London, Macmillan, 1993.
[36] Puzyr, A.P., Pozdnyakova I.O., Bondar, V.S., Design of a Luminescent
Biochip with Nanodiamonds and Bacterial Luciferase, Physics Solid State,
46, 761-763, 2004.
[37] Wang, Y., Zhang, X., Zhang, H., Lu, Y., Huang, H., Dong, X., Chen, J.,
Dong, J., Yang, X., Hang, H. and Jiang, T., Coiled-Coil Networking Shapes
Cell Molecular Machinery, Molecular Biology of the Cell 23, 19, 3911-3922,
2012.
[38] Wood, R.W., On A Remarkable Case of Uneven Distribution of Light in A
Diffraction, Proceedings of the Physical Society of London, 18, 1, 269-275
1902.
[39] Wood, R.W., XLII. On a Remarkable Case of Uneven Distribution of Light in
a Diffraction Grating Spectrum, Philosophical Magazine, 4, 21, 396-402,
1902.
[40] Kretchmann, E., Reather, H., Z., Radiative Decay of Non Radiative Surface
Plasmons Excited by Light, 2135-2136, 1968.
[41] Liedberg, B., Nylander, C., Lunström, I., Surface Plasmon Resonance for
Gas Detection and Biosensing, Sensors Actuators, 4, 299-304, 1983.
[42] Kawazumi, H., Gobi, V., Ogino, K., Maeda, H., Miura, N., Compact Surface
Plasmon Resonance (SPR) Immunosensor Using Multichannel for
Simultaneous Detection of Small Molecule Compounds, Sensors and
Actuators B: Chemical, 108, 791–796, 2005.
[43] Kawazumi, H., Gobi, V., Ogino, K., Maeda, H., Miura, N., Compact Surface
Plasmon Resonance (SPR) Immunosensor Using Multichannel for
Simultaneous Detection of Small Molecule Compounds, 108, 1-2, 791-796,
2005.
[44] Rodriguez-Mozaz, S., Reder, S., Lopez de Alda, M., Gauglitz, G. ve Barceló,
D., Simultaneous Multi-Analyte Determination of Estrone, Isoproturon and
Atrazine in Natural Waters by the River Analyser (RIANA), An Optical
Immunosensor, Biosens Bioelectron, 19, 7, 633-640, 2004.
[45] Tschmelak, J., Proll, G. ve Gauglitz, G., Optical Biosensor for
Pharmaceuticals, Antibiotics, Hormones, Endocrine Disrupting Chemicals
and Pesticides in Water: Assay Optimization Process for Estrone As
Example, Talanta, 65, 313–323, 2005.
[46] Goldman, E.R., Clapp, A.R., Anderson, G.P., Uyeda, H.T., Mauro, J.M.,
Medintz, I.L., Mattoussi, H., Multiplexed Toxin Analysis Using Four Colors of
Quantum Dot Fluororeagents, Analytical Chemitry, 76, 684–688, 2004.
[47] Sequeira, M., Bowden, M., Minogue, E., Diamond, D., Towards autonomous
environmental monitoring systems, Talanta, 56, 355–363, 2002.
[48] Suzuki, H., Microfabrication of Chemical Sensors and Biosensors for
Environmental Monitoring, Materials Science and Engineering, 12, 55–61,
2000.
[49] Rodriguez-Mozaz, S., Lopez de Alda, M.J. ve Barceló, D. Biosensors as
Useful Tools for Environmental Analysis and Monitoring, Analytical and
Bioanalytical Chemistry, 386, 1025-1041, 2006.
[50] Bange, A., Halsall, H.B., Heineman, W.R., Microfluidic Immunosensor
Systems, Biosensors and Bioelectronics, 20, 2488–2503, 2005.
[51] Çaktü, K., Kolesterol Baskılanmış Eş-Boyutlu Poli(GMA-MAT) Mikrokürepoli(HEMA)
Kriyojel Kompozit Sistemlerinin Hazırlanması, Yüksek Lisans
Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2009.
[52] Alocilja, E.C., Radke, S.M., Market Analysis of Biosensors for Food Safety,
Biosensors and Bioelectronics,18, 841–846, 2003.
[53] Tothill, I.E., Biosensors Developments and Potential Applications in the
Agricultural Diagnosis Sector, Computers and Electronics in Agriculture, 30,
205–218, 2001.
[54] Kroger, S., Piletsky, S., Turner, A.P.F., Biosensors for Marine Pollution
Research, Monitoring and Control, Marine Pollution Bulletin, 45, 24–34,
2002.
[55] Leonard, P., Hearty, S., Brennan, J., Dunne, L., Quinn, J., Chakraborty, T.,
O’Kennedy, R., Advances in Biosensors for Detection of Pathogens in Food
and Water, Enzyme and Microbial Technology, 32, 3–13, 2003.
[56] Mauriz, E., Calle, A., Abad, A., Montoya, A., Hildebrandt, A., Barceló, D.,
Lechuga, L.M., Determination of Carbaryl in Natural Water Samples by A
Surface Plasmon Resonance Flow-Through Immunosensor, Biosensors
and Bioelectronics, 21, 2129–2136, 2006.
[57] Rich, R.L., Myszka, D.G., Advances in Surface Plasmon Resonance
Biosensor Analysis, Current Opinion in Biotechnology, 11, 54–61, 2000.
[58] Glazier, S.A., Campbell, E.R., Campbell, W.H., Construction and
Characterization of Nitrate Reductase-Based Amperometric Electrode and
Nitrate Assay of Fertilizers and Drinking Water, Analytical Chemistry, 70,
1511–1515, 1998.
[59] Behnisch, P.A., Hosoe, K., Sakai, S-i., Bioanalytical Screening Methods for
Dioxins and Dioxin-Like Compounds — A Review of Bioassay/Biomarker
Technology, Environment International, 27, 413–439, 2001.
[60] Iqbal, S.S., Mayo, M.W., Bruno, J.G., Bronk, B.V., Batt, C.A., Chambers,
J.P., A Review of Molecular Recognition Technologies for Detection of
Biological Threat Agents, Biosensors and Bioelectronics,15, 549–578, 2000.
[61] Wood, RW., On a Remarkable Case of Uneven Distribution of Light in A
Diffraction Grating Spectrum, Philysophical Magazine, 4, 396-402, 1902.
[62] Schasfoort R.B.M., Tudos A.J., (eds), Handbook of Surface Plasmon
Resonance, The Royal Society of Chemistry, Cambridge, UK, 2008.
[63] Liedberg, B., Nylander, C., Lundstrom, I., Surface Plasmon Resonance for
Gas Detection and Biosensing, Sensors and Actuators, 4, 29-304, 1983.
[64] Komiyama, M., Takeuchıi T., Mukawa, T., Asanuma, H., Molecular Imprinting
from Fundamentals to Applications, Wiley-VCH, New York, USA, 2003.
[65] Wulff, G., Poll, H.G., Enzyme-analogue Built Polymers, 23. Influence of the
Structure of the Binding Sites on the Selectivity for Racemic Resolution,
Makromolecular Chemistry and Physics, 188, 4, 741-748, 1987..
[66] Mosbach, K., Ramström, O., The Emerging Technique of Molecular
Imprinting and its Future Impact on Biotechnology, Nature Biotechnology,
14, 163-170, 1996.
[67] Rao, T.P., Daniel, S., Gladis, J.M., Tailored Materials for Preconcentration or
Separation of Metals by Ion-imprinted Polymers for Solid-phase Extraction
(IIP-SPE), Trends in Analytical Chemistry, 23, 28-35, 2004.
[68] Piletsky, S. A., Alcock, S., Turner, A.P.F., Molecular Imprinting: at the edge of
the third Millennium, Trends Biotechnol, 19, 9-12, 2001.
[69] Osman, B., Miyoglobin Tayinine Yönelik Moleküler Bakılanmış Yüzey
Plazmon Rezonans Biyosensör Hazırlanması, Doktora Tezi, Hacettepe
Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2011.
[70] Türkoğlu, E.A. Yüzey Plazmon Rezonans Temelli Antibadi Sensörlerin
Hazırlanması, Yüksek Lisans Tezi, Uludağ Üniversitesi, Fen Bilimleri
Enstitüsü, Ankara, 2010.
[71] Nakamura, C., Hasegawa, M., Nakamura, N., Miyake, J., Rapid and
Specific Detection of Herbicides Using A Self-Assembled Photosynthetic
Reaction Center from Purple Bacterium on an SPR Chip, Biosensors and
Bioelectronics, 18, 599-603, 2003.
[72] Miura N., Sasaki, M., Gobi, K.V., Kataoka, C., Shoyama, Y., Highly Sensitive
And Selective Surface Plasmon Resonance Sensor for Detection of SubPpb
Levels of Benzo[A]Pyrene by Indirect Competitive İmmunoreaction
Method, Biosensors and Bioelectronics, 18, 7, 953-959, 2003.
[73] Strong, A., Stimpson, D.I., Bartholomew, D.U., Jenkins, T.F., Elkind, J.L.,
Detection of Trinitrotoluene (TNT) Extracted From Soil Using A Surface
Plasmon Resonance (SPR)-based Sensor Platform. SPIE, 3710, 362-372,
1999.
[74] Oh, B.K., Kim, Y.K., Bae, Y.M., Lee, W.H., Choi, J.W., Detection of
Escherichia Coli O157, H7 Using İmmunosensor Based on Surface
Plasmon Resonance, Journal of Microbiology and Biotechnology, 12, 780-
786, 2002.
[75] Taylor, A.D., Ladd, J., Yu, Q., Chen, S., Homola, J., Jiang, S., Quantitative
And Simultaneous Detection of Four Foodborne Bacterial Pathogens with A
Multi-Channel SPR Sensor, Biosensors and Bioelectronics, 22, 752-758,
2006.
[76] Lotierzo, M., Henry, O.Y.F., Piletsky, S., Tothill, I., Cullen, D., Kania, M.,
Hock, B., Turner, A.P.F., Surface Plasmon Resonance Sensor for Domoic
Acid Based on Grafted Imprinted Polymer, Biosensors and Bioelectronics,
20, 145-152, 2004.
[77] Uzun, L., Say , R., Ünal, S., Denizli, A., Production of Surface Plasmon
Resonance Based Assay Kit for Hepatitis Diagnosis, Biosensors and
Bioelectronics, 24, 2878–2884, 2009.
[78] Ladd, J., Boozer, C., Yu, Q., Chen, S., Homola, J., Jiang, S., DNA-directed
Protein Immobilization on Mixed Self-Assembled Monolayers Via A
Streptavidin Bridge, Langmuir, 20, 8090-8095, 2004.
[79] Stigter, E.C., Jong, G.J., Van Bennekom, W.P., An Improved Coating for The
Isolation and Quantitation of Interferon-Gamma in Spiked Plasma Using
Surface Plasmon Resonance (SPR), Biosensors and Bioelectronics, 21,
474-482, 2005.
[80] Bokken, G.C.A.M., Corbee, R.J., van Knapen, F., Bergwerff, A.A.,
Immunochemical Detection of Salmonella Group B, D. and E Using an
Optical Surface Plasmon Resonance Biosensor, FEMS Microbiology
Letters, 222, 75–82, 2003.
[81] Jiang, T., Zhao, L., Chu, B., Feng, Q., Yan, W., Lin, J-M., Molecularly
Imprinted Solid-Phase Extraction for the Selective Determination of 17β-
Estradiol in Fishery Samples with High Performance Liquid
Chromatography, Talanta, 78, 442-447, 2009.
[82] Dong, J., Gao, N., Peng, Y., Guo, C., Lv, Z., Wang, Y., Zhou, C., Ning, B.,
Liu, M., Gao, Z., Surface Plasmon Resonance Sensor for Profenofos
Detection Using Molecularly Imprinted Thin Film as Recognition Element,
Food Control, 25, 543-549, 2012.
[83] Wulff, G., Poll, H.G., Enzyme-analogue Built Polymers, 23. Influence of the
Structure of the Binding Sites on the Selectivity for Racemic Resolution,
Makromolecular Chemistry and Physics, 188, 4, 741-748, 1987.
[84] Sönmezler, M., Kuartz Kristal Mikroterazi (QCM) Temelli Histidin Sensörler,
Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 2011.
[85] Haupt, K., Molecularly imprinted polymers: The Next Generation, Analytical
Chemistry, 75, 376A-383A, 2003.
[86] Mayers, A.G., Mosbach, K., Molecularly Imprinted Polymers: Useful
Materials for Analytical Chemistry, Trends in Analytical Chemistry, 16, 321–
332, 1997.
[87] Rao, T.P., Daniel, S., Gladis, J.M., Tailored Materials for Preconcentration or
Separation of Metals by Ion-İmprinted Polymers for Solid-Phase Extraction
(IIP-SPE), Trends in Analytical Chemistry, 23, 28-35, 2004.
[88] Haupt, K., Ye, L., Molecularly Imprinted Polymers as Antibody and Receptor
Mimics for Assays, Sensors and Drug Discovery, Analytical and
Bioanalytical Chemistry, 378, 1887-1897, 2004.
[89] Yavuz, H., Karakoc, V., Turkmen, D., Say, R., Denizli, A., Synthesis of
Cholesterol Imprinted Polymeric Particles, International Journal of Biological
Macromolecules, 41, 8-15, 2006.
[90] Owens, P.K., Karlsson, L., Lutz, E.S.M., Andersson, L.I., Molecular
İmprinting for Bio- And Pharmaceutical Analysis, Trends in Analytical
Chemistry, 18, 146–154, 1999.
[91] Ansell, D.J., Molecularly Imprinted Polymers for The Enantioseparation of
Chiral Drugs, Advanced Drug Delivery Reviews, 57, 1809–1835, 2005.
[92] Schweitz, L., Sp´egel, P., Nilsson, S., Approaches to Molecular İmprinting
Based Selectivity in Capillary Electrochromatography, Electrophoresis, 22,
4053–4063, 2001.
[93] Liu, C., Lin, C., An Insight into Molecularly Imprinted Polymers for Capillary
Electrochromatography, Electrophoresis, 25, 3997–4007, 2004.
[94] Liu, Z., Zheng, C., Yan, C., Gao, R., Molecularly Imprinted Polymers as a
Tool for Separation in CEC, Electrophoresis, 28, 127–136, 2007.
[95] Kempe, M., Mosbach, K., Separation of Amino Acids, Peptides and Proteins
on Molecularly Imprinted Stationary Phases. J Chrom. A, 691, 1/2, 317-323,
1995.
[96] Anderson, L., Muller, R., Vlatakis, G., Mosbach, K., Mimics of The Binding
Sites of Opioid Receptors Obtained by Molecular Imprinting of Enkephalin
and Morphine. Proc. Natl. Acad. Sci, 92, 11, 4788-4792, 1995.
[97] Dickert, F.L., Hayden, O., Bioimprinting of Polymers and Sol-Gel Phases
“Selective Detection of Yeasts with Imprinted Polymers”. Anal. Chem., 74, 6,
1302-1306, 2002.
[98] Katz, A., Davis, M. E., Molecular Imprinting of Bulk, Microporous Silica,
Nature, 403, 6767, 286-289, 2000.
[99] Parmpi, P., Kofinas, P., Biomimetic Glucose Recognition Using Molecularly
Imprinted Polymer Hydrogels. Biomaterials, 25, 10, 1969-1973, 2004.
[100] Yılmaz, E., Haupt, K., Mosbach, K., The Use of Immobilized Templates-A
New Approach in Molecular Imprinting. Angew. Chem. Int. Ed., 39, 12,
2115-2118, 2000.
[101] Burow, N., Minoura, N., Molecular Imprinting: Synthesis Of Polymer
Particles With Antibody-Like Binding Characteristics For Glucose Oxidase.
Biochem. Biophys. Res.Commun., 227, 2, 419-422, 1996.
[102] Bossi, A., Piletsky, S.A., Piletska, E.V., Righetti, P.G, Turner, A.P.F., SurfaceGrafted
Molecularly Imprinted Polymers for Protein Recognition. Anal.
Chem., 73, 21, 5281-5286, 2001.
[103] Guo, T. Y., Xia, Y. Q., Hao, G. J., Song, M. D., Zhang, B.H., Adsorptive
Seperation of Hemoglobin by Molecularly Imprinted Polymers. Biomaterials,
25, 5905-5912, 2004.
[104] Nicholls, I.A., Rosengren, J.P., Molecular Imprinting of Surfaces.
Bioseperations, 10, 301-305, 2002.
[105] Ki, C.D., Oh, C., Oh, S-G., Chang, J.Y., The Use of A Thermally Reversible
Bond for Molecular Imprinting of Silica Spheres. J. Am. Chem. Soc., 124,
14838-14839, 2002.
[106] Li, Z., Ding, J., Day, M., Tao, Y., Molecularly Imprinted Polymeric
Nanospheres by Diblock Copolymer Self-Assembly. Macromol., 39, 2629-
2636, 2006.
[107] Kempe, H., Kempe, M., Development and Evaluation of Spherical
Molecularly İmprinted Polymer Beads, Analytical Chemistry, 78, 3659-3666,
2006.
[108] Ciardelli, G., Borrelli, C., Silvestri, D., Cristallini, C., Barbani, N., Giusti, P.,
Supported Imprinted Nanospheres for the Selective Recognition of
Cholesterol., Biosens Bioelectron, 15, 12, 2329-2338, 2006.
[109] Garipcan, B., Denizli, A., A Novel Affinity Support Material for the Separation
of Immunoglobulin G from Human Plasma, Macromolecular Bioscience, 2,
135-144, 2002.
[110] Colthup, N.B., Daly, L.H., Wiberley, S.E., Introduction to Infrared and
Raman Spectroscopy, 3rd ed, Academic Press, New York, 1990.
[111] Lin-Vein, D., Colthup, N, Fateley, W.G., Grasselli, J., The Handbook of
Infrared and Raman Characteristic Frequencies of Organic Molecules,
Academic Press, San Diego, Kaliforniya, 1991.
[112] Chou, P.C., Rick, J., Chou, T.C., C-reative Protein Thin-Film Molecularly
İmprinted Polymers Formed Using a Micro-Contact Approach. Analytica
Chimica Acta, 542, 20-25, 2005.
[113] Lin, H.Y., Hsu, C.Y., Thomas, J.L., Wang, S.E., Chen, H.C., Chou, T.C. The
Micro-Contact Imprinting of Proteins: The Effect of Cross-Linking Monomers
for Lysozyme, Ribonuclease A And Myoglobin. Biosensensors &
Bioelectronics, 15, 534-543, 2006.
[114] Sun, Y., Yan, F., Yang, W., Sun, C., Multilayered Construction of Glucose
Oxidase and Silica Nanoparticles on Au Electrodes Based on Layer-ByLayer
Covalent Attachment. Biomaterials, 27, 4042-4049, 2006.
[115] Frederix, F., Bonroy, K., Reekmans, G., Laureyn, W., Campitelli, A.,
Abramov, M.A., Dehaen, W., Maes, G., Reduced Nonspecific Adsorption on
Covalently Immobilized Protein Surfaces Using Poly(Ethylene Oxide)
Containing Blocking Agents, The International Journal of Biochemistry, 30,
1, 67-74, 2004.
[116] Lu, Z., Li, C.M., Z, Q., Bao, Q., Cui, X., Covalently Linked DNA/protein
Multilayered Film for Controlled DNA Release. J. Coll. Inter. Sci., 314, 80-
88, 2007.
[117] Duan, L., He, Q., Yan, X., Cui, Y., Wang, K., Li, J., Hemoglobin Protein
Hollow Shells Fabricated Through Covalent Layer-By-Layer Technique.
Biochem. Biophys. Res. Commun., 354, 357-362, 2007.
[118] Zhang, Q.Y., Tao, M.L., Shen, W.D., Zhou, Y.Z., Ding, Y., Ma, Y., Zhou, W.L.
Immobilization of L-Asparaginase on the Microparticles of the Natural Silk
Sericin Protein and İts Characters, Biomaterials, 25, 17, 3751-3759, 2004.
[119] Christiaens, P., Vermeeren, V., Wenmackers, S., Daenen, M., Haenen, K.,
Nesladek, M., vandeVen, M., Ameloot, M., Michiels, L., Wagner, P., EDCMediated
DNA Attachment to Nanocrystalline CVD Diamond Films. Biosens.
Bioelectron., 22, 170-177, 2006.
[120] D’Souza, S.F., Godbole, S.S., Immobilization of Invertase on Rice Husks
Using Polyethyleneimine. J. Biochem. Biophys. Methods, 52, 59-62, 2002.
[121] Choi, H. J., Kimb, N. H., Chung, B. H., Seong, G. H., Micropatterning of
Biomolecules on Glass Surfaces Modified with Various Functional Groups
Using Photoactivatable Biotin. Anal. Biochem., 347, 60-66, 2005.
[122] Betancor, L., Lopez-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, C.,
Fernandez-Lafuente, R., Guisan, J. M., Different Mechanisms of Protein
İmmobilization on Glutaraldehyde Activated Supports: Effect of Support
Activation and Immobilization Conditions, Enzyme and Microbial
Technology, 39, 4, 877-882, 2006.
[123] Avseenko, N.V., Morozova, T.Y., Ataullakhanov, F.I., Immobilization of
Proteins in Immunochemical Microarrays Fabricated by Electrospray
Deposition, Analytical Chemistry, 73, 6047-6052, 2001.
[124] Gan, S.H., Yang, P., Yang, W.T., Photoactivation of Alkyl C-H and
Silanization: A Simple and General Route to Prepare High-Density Primary
Amines on Inert Polymer Surfaces for Protein Immobilization.
Biomacromolecules, 10, 1238–1243, 2009.
[125] Graf, N., Yegen, E., Lippitz, A., Treu, D., Wirth, T., Unger, W.E.S.
Optimization of Cleaning and Amino-Silanization Protocols for Si Wafers to
Be Used as Platforms for Biochip Microarrays by Surface Analysis (XPS,
ToF-SIMS and NEXAFS spectroscopy), Surface and Interface Analysis, 40,
180-183, 2008.
[126] Qin, M., Hou, S., Wang, L.K., Feng, X.Z., Wang, R., Yang, Y.B., Wang, C.,
Yu, L., Shao, B., Qiao, M.Q. Two Methods for Glass Surface Modification
and Their Application in Protein İmmobilization, Colloids and Surfaces B:
Biointerfaces, 60, 243–249, 2007.
[127] Haupt, K., Belmont, A.S. Handbook of Biosensors and Biochips: Molecularly
İmprinted Polymers as Recognition Elements in Sensors, Ed.: John Wiley
and Sons,Ltd. Chapter 14, 8-9, 2007.
[128] Piacham, T., Josell, A., Arwin, H., Prachayasittikul, V., Ye, L.. Molecularly
Imprinted Polymer Thin Films On Quartz Crystal Microbalance Using A
Surface Bound Photo-Radical Initiator. Analytica Chimica Acta, 536, 191–
196, 2005.
[129] Lin, L.P., Huang, L.S., Lin, C.W., Lee, C.K., Chen, J.L., Hsu, S.M., Lin, S..
Determination of Binding Constant of DNA-binding Drug to Target DNA by
Surface Plasmon Resonance Biosensor Technology. Current Drug Target,
5, 61-72, 2005.
[130] Li, X., Husson, S.M., Two-Dimensional Molecular Imprinting Approach to
Produce Optical Biosensor Recognition Elements. Langmuir, 22, 9658-
9663, 2006b.
[131] Umpleby, R.J., Baxter, S.C., Chen,Y., Shah, R.N., Shimizu, K.D.,
Characterization of Molecularly İmprinted Polymers with the Langmuir–
Freundlich Isotherm. Analytical Chemistry, 73, 4584–4591, 2001.
[132] Wei, X., Samadi, A., Husson, S.M., Synthesis and Characterization of
Molecularly Imprinted Polymers for Chromatographic Separations.
Separation Science and Technology, 40, 109–129, 2005.
[133] Lin, L.P., Huang, L.S., Lin, C.W., Lee, C.K., Chen, J.L., Hsu, S.M., Lin, S.
Determination of Binding Constant of DNA-binding Drug to Target DNA by
Surface Plasmon Resonance Biosensor Technology, Current Drug Target,
5, 61-72, 2005.
[134] Zhang, L., Cheng, G., Fu, C. Molecular Selectivity of Tyrosine-Imprinted
Polymers Prepared by Seed Swelling and Suspension Polymerization.
Polymer International, 51, 8, 687-692, 2002.
[135] Patricia, A. Zunszain, Ghuman, J., Komatsu, T., Tsuchida, E. and Curry, S.,
Crystal Structural Analysis of Human Serum Albümin Complexed with
Hemin and Fatty Acid, BMC Structural Biology, 3, 6, 1-9, 2003. | tr_TR |