Show simple item record

dc.contributor.advisorER, Nuray
dc.contributor.authorKOÇ, Onur
dc.date.accessioned2017-02-28T11:33:47Z
dc.date.available2017-02-28T11:33:47Z
dc.date.issued2017
dc.date.submitted2017-02-16
dc.identifier.citation1. Xing Q, Xianglin D, Tao Q, Weicheng G, Shaolin M. [Meta-analysis of steroids in reducing postoperative edema in rhinoplasty]. Zhonghua Zheng Xing Wai Ke Za Zhi. 2015;31(5):356-9. 2. Ferraiolo DM, Veitz-Keenan A. Ibuprofen is superior to paracetamol for pain relief following third molar removal. Evid Based Dent. 2014;15(4):106-7. 3. Zandi M, Amini P, Keshavarz A. Effectiveness of cold therapy in reducing pain, trismus, and oedema after impacted mandibular third molar surgery: a randomized, self-controlled, observer-blind, split-mouth clinical trial. Int J Oral Maxillofac Surg. 2016;45(1):118-23. 4. Landucci A, Wosny AC, Uetanabaro LC, Moro A, Araujo MR. Efficacy of a single dose of low-level laser therapy in reducing pain, swelling, and trismus following third molar extraction surgery. Int J Oral Maxillofac Surg. 2016;45(3):392-8. 5. Rao P, Knaus EE. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci. 2008;11(2):81s-110s. 6. Mehra P, Reebye U, Nadershah M, Cottrell D. Efficacy of anti-inflammatory drugs in third molar surgery: a randomized clinical trial. Int J Oral Maxillofac Surg. 2013;42(7):835-42. 7. Albertini R, Villaverde AB, Aimbire F, Salgado MA, Bjordal JM, Alves LP, et al. Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol B. 2007;89(1):50-5. 8. Joshi KK, Nerurkar RP. Anti-inflammatory effect of the serratiopeptidase--rationale or fashionable: a study in rat paw oedema model induced by the carrageenan. Indian J Physiol Pharmacol. 2012;56(4):367-74. 9. Frost GI. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin Drug Deliv. 2007;4(4):427-40. 10. Sanford M. Human immunoglobulin 10 % with recombinant human hyaluronidase: replacement therapy in patients with primary immunodeficiency disorders. BioDrugs. 2014;28(4):411-20. 11. Kim MS, Youn S, Na CH, Shin BS. Allergic reaction to hyaluronidase use after hyaluronic acid filler injection. J Cosmet Laser Ther. 2015:1-3. 12. Montgomery MT, Hogg JP, Roberts DL, Redding SW. The use of glucocorticosteroids to lessen the inflammatory sequelae following third molar surgery. J Oral Maxillofac Surg. 1990;48(2):179-87. 13. Alcantara CE, Falci SG, Oliveira-Ferreira F, Santos CR, Pinheiro ML. Pre-emptive effect of dexamethasone and methylprednisolone on pain, swelling, and trismus after third molar surgery: a split-mouth randomized triple-blind clinical trial. Int J Oral Maxillofac Surg. 2014;43(1):93-8. 14. Uslu M, Kilincoglu V, Toker S, Kalender AM, Dogan A, Sebik A. Comparison of anti-edema effects of iloprost and diclofenac sodium on traumatic rat paw edema. Acta Orthop Traumatol Turc. 2010;44(6):484-91. 15. Ozbek H. OA. Antienflamatuvar Etkinliğin Ölçülmesinde Kullanılan Yöntemler. Van Tip Dergisi. 2003;10(1):23-8. 16. Miloro M. (2004). Peterson's Principles Of Oral and Maxillofacial Surgery. London: BC Decker Inc. 17. Cai TQ, Wu WZ, Shin MK, Xu YM, Jochnowitz N, Zhou YC, et al. Factor XII full and partial null in rat confers robust antithrombotic efficacy with no bleeding. Blood Coagul Fibrin. 2015;26(8):893-902. 18. Pansani T. N., Basso F. G., Soares D. G., Hebling j., Costa C. A. (2016). Functional Differences In Gingival Fibroblasts Obtained from Young and Elderly Individuals: Brasilian Dental Journal. 27(5):485-491. 19. Hofman D. (1998). Oedema and Its Treatment: Journal Of Wound Care. 10-13. 20. Senturk N. Kutanoz Inflamasyon. Turkderm. 2013;47:28-36. 21. Tuncer M., Türker R.K., Kayaalp O. (2000). Rasyonel Tedavi Yönünden Tıbbi Farmakoloji, Ankara: Hacettepe- Taş. 22. Hasmann A, Wehrschuetz-Sigl E, Kanzler G, Gewessler U, Hulla E, Schneider KP, et al. Novel peptidoglycan-based diagnostic devices for detection of wound infection. Diagn Microbiol Infect Dis. 2011;71(1):12-23. 23. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-75. 24. Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol. 2009;54(1 Suppl):S10-9. 25. Gouwy M, Struyf S, Catusse J, Proost P, Van Damme J. Synergy between proinflammatory ligands of G protein-coupled receptors in neutrophil activation and migration. J Leukoc Biol. 2004;76(1):185-94. 26. Golias C, Tsoutsi E, Matziridis A, Makridis P, Batistatou A, Charalabopoulos K. Review. Leukocyte and endothelial cell adhesion molecules in inflammation focusing on inflammatory heart disease. In Vivo. 2007;21(5):757-69. 27. McFadden J, Fry L, Powles AV, Kimber I. Concepts in psoriasis: psoriasis and the extracellular matrix. Br J Dermatol. 2012;167(5):980-6. 28. Kumar V, Abbas AK ve Aster JC.(2013).Robbins Basic Pathology (9th edition). Saunders (Elsevier). 29. Ogonowski AA, May SW, Moore AB, Barrett LT, O'Bryant CL, Pollock SH. Antiinflammatory and analgesic activity of an inhibitor of neuropeptide amidation. J Pharmacol Exp Ther. 1997;280(2):846-53. 30. Kuzey M., (2007). Temel Pataloji. İstanbul: Güneş Kitabevi. 31. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci. 2011;68(5):765-83. 32. Onat T., Emerk K., Sözmen E.Y. (2007). İnsan Biyokimyası. Ankara: Palme Yayıncılık. 33. Guyton A.C., Hall J.E. (2014). Tıbbi Fizyoloji (Yeğen B.Ç., Alican İ., Solakoğlu Z. Çev.). İstanbul: Nobel Tıp. 34. Flynn KM, Michaud M, Canosa S, Madri JA. CD44 regulates vascular endothelial barrier integrity via a PECAM-1 dependent mechanism. Angiogenesis. 2013;16(3):689-705. 35. Wernersson S, Pejler G. Mast cell secretory granules: armed for battle. Nat Rev Immunol. 2014;14(7):478-94. 36. Champe P.C., Harvey R.A., Ferrier D.R. (2004). Biochemistry. Philadelphia: Lippincott Williams & Wilkins. 37. Maleki N, Nayebi AM, Garjani A. Effects of central and peripheral depletion of serotonergic system on carrageenan-induced paw oedema. Int Immunopharmacol. 2005;5(12):1723-30. 38. Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron. 2005;46(2):247-60. 39. Peakman M., Vegani D. (1997). Basic and Clinical Immunology, Londra: Churchill Livingstone. 40. Dray A, Perkins M. Bradykinin and inflammatory pain. Trends Neurosci. 1993;16(3):99-104. 41. Opie LH. Pharmacological differences between calcium antagonists. European Heart Journal. 1997;18:A71-A9. 42. Sharma JN, Buchanan WW. Pathogenic responses of bradykinin system in chronic inflammatory rheumatoid disease. Exp Toxicol Pathol. 1994;46(6):421-33. 43. Hall JM. Bradykinin receptors: pharmacological properties and biological roles. Pharmacol Ther. 1992;56(2):131-90. 44. Ferreira SH, Lorenzetti BB, Poole S. Bradykinin initiates cytokine-mediated inflammatory hyperalgesia. Br J Pharmacol. 1993;110(3):1227-31. 45. Campos MM, Cabrini DA, Cardozo AH, Rae GA, Toro JH, Calixto JB. Changes in paw oedema triggered via bradykinin B(1) and B(2) receptors in streptozotocin-diabetic rats. Eur J Pharmacol. 2001;416(1-2):169-77. 46. Ponticelli C, Meroni PL. Kallikreins and lupus nephritis. J Clin Invest. 2009;119(4):768-71. 47. Bileviciute I, Lundeberg T, Ekblom A, Theodorsson E. Bilateral changes of substance P-, neurokinin A-, calcitonin gene-related peptide- and neuropeptide Y-like immunoreactivity in rat knee joint synovial fluid during acute monoarthritis. Neurosci Lett. 1993;153(1):37-40. 48. Thornton E, Vink R. Substance P and its tachykinin NK1 receptor: a novel neuroprotective target for Parkinson's disease. Neural Regen Res. 2015;10(9):1403-5. 49. d'Audigier C, Cochain C, Rossi E, Guerin CL, Bieche I, Blandinieres A, et al. Thrombin receptor PAR-1 activation on endothelial progenitor cells enhances chemotaxis-associated genes expression and leukocyte recruitment by a COX-2-dependent mechanism. Angiogenesis. 2015;18(3):347-59. 50. Jose RJ, Williams AE, Mercer PF, Sulikowski MG, Brown JS, Chambers RC. Regulation of Neutrophilic Inflammation by Proteinase-Activated Receptor 1 during Bacterial Pulmonary Infection. J Immunol. 2015;194(12):6024-34. 51. Cirino G., Napoli C., Bucci M., Cicala C. (2000). Inflammation–coagulation network: are serine protease receptors the knot? Trends in Pharmacological Sciences, 21 (5), 170-172. 52. Steinmeyer J. Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs. Arthritis Res. 2000;2(5):379-85. 53. Simon LS. Role and regulation of cyclooxygenase-2 during inflammation. Am J Med. 1999;106(5B):37S-42S. 54. Livingston A. Mechanism of action of nonsteroidal anti-inflammatory drugs. Vet Clin North Am Small Anim Pract. 2000;30(4):773-81, vi. 55. Liu H, Chen J, Li W, Rose ME, Shinde SN, Balasubramani M, et al. Protein Disulfide Isomerase as a Novel Target for Cyclopentenone Prostaglandins: Implications for Hypoxic Ischemic Injury. FEBS J. 2015. 56. Gökşen US, Kelekçi NG.(2010). Antiinflamatuvar Tedavide Yeni Bir Yaklaşım: Siklooksijenaz ve 5-Lipooksijenazın Dual İnhibitörleri. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi, 30(1), 81-118. 57. Wheeler MA, Yoon JH, Olsson LE, Weiss RM. Cyclooxygenase-2 protein and prostaglandin E(2) production are up-regulated in a rat bladder inflammation model. Eur J Pharmacol. 2001;417(3):239-48. 58. Chou WY, Chuang KH, Sun D, Lee YH, Kao PH, Lin YY, et al. Inhibition of PKC-induced COX-2 and IL-8 Expression in Human Breast Cancer Cells by Glucosamine. J Cell Physiol. 2015. 59. Martin M, Neumann D, Hoff T, Resch K, DeWitt DL, Goppelt-Struebe M. Interleukin-1-induced cyclooxygenase 2 expression is suppressed by cyclosporin A in rat mesangial cells. Kidney Int. 1994;45(1):150-8. 60. Nayeem SB, Dharmarajan A, Keelan JA. Paracrine communication modulates production of Wnt antagonists and COX1-mediated prostaglandins in a decidual-trophoblast co-culture model. Mol Cell Endocrinol. 2015;405C:52-62. 61. Goodwin DC, Landino LM, Marnett LJ. Effects of nitric oxide and nitric oxide-derived species on prostaglandin endoperoxide synthase and prostaglandin biosynthesis. FASEB J. 1999;13(10):1121-36. 62. Bjorkman DJ. The effect of aspirin and nonsteroidal anti-inflammatory drugs on prostaglandins. Am J Med. 1998;105(1B):8S-12S. 63. Vane JR, Botting RM. Mechanism of action of aspirin-like drugs. Semin Arthritis Rheum. 1997;26(6 Suppl 1):2-10. 64. Figueiredo-Pereira ME, Rockwell P, Schmidt-Glenewinkel T, Serrano P. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. Front Mol Neurosci. 2014;7:104. 65. Pishak VP, Rohovyi I, Filipova LO, Stepanova Ie S. [Pathogenetic role of prostanoids in disorders of sodium reabsorption during development of acute renal insufficiency]. Fiziol Zh. 2002;48(1):30-4. 66. Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA. Arachidonic acid oxygenation by COX-1 and COX-2. Mechanisms of catalysis and inhibition. J Biol Chem. 1999;274(33):22903-6. 67. Klein T, Klaus G, Komhoff M. Prostacyclin Synthase: Upregulation during Renal Development and in Glomerular Disease as well as Its Constitutive Expression in Cultured Human Mesangial Cells. Mediators Inflamm. 2015;2015:654151. 68. Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta. 2015;1851(4):340-55. 69. Capra V, Rovati GE, Mangano P, Buccellati C, Murphy RC, Sala A. Transcellular biosynthesis of eicosanoid lipid mediators. Biochim Biophys Acta. 2015;1851(4):377-82. 70. Wenceslau CF, McCarthy CG, Szasz T, Webb RC. Lipoxin A4 mediates aortic contraction via RHOA/RHO kinase, endothelial dysfunction and reactive oxygen species. J Vasc Res. 2014;51(6):407-17. 71. Yang L, Ni L, Duan Q, Wang X, Chen C, Chen S, et al. CYP epoxygenase 2J2 prevents cardiac fibrosis by suppression of transmission of pro-inflammation from cardiomyocytes to macrophages. Prostaglandins Other Lipid Mediat. 2015;116-117C:64-75. 72. Meling DD, McDougle DR, Das A. CYP2J2 epoxygenase membrane anchor plays an important role in facilitating electron transfer from CPR. J Inorg Biochem. 2014;142C:47-53. 73. Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev. 2014;66(4):1106-40. 74. Osterud B, Bjorklid E. Role of monocytes in atherogenesis. Physiol Rev. 2003;83(4):1069-112. 75. Montrucchio G, Alloatti G, Camussi G. Role of platelet-activating factor in cardiovascular pathophysiology. Physiol Rev. 2000;80(4):1669-99. 76. Kim H, Kim BJ, Ahn SH, Lee SH, Koh JM. Higher plasma platelet-activating factor levels are associated with increased risk of vertebral fracture and lower bone mineral density in postmenopausal women. J Bone Miner Metab. 2014. 77. Honda Z, Ishii S, Shimizu T. Platelet-activating factor receptor. J Biochem. 2002;131(6):773-9. 78. Reznichenko A, Korstanje R. The Role of Platelet-Activating Factor in Mesangial Pathophysiology. Am J Pathol. 2015. 79. Harvey R., Ferrier D. (2014). Lippincott Görsel Anlatımlı Çalışma Kitapları: Biyokimya (Ulukaya E. çev.). Ankara: Nobel Tıp Kitabevi. 80. Keating SM, Jacobs ES, Norris PJ. Soluble mediators of inflammation in HIV and their implications for therapeutics and vaccine development. Cytokine Growth Factor Rev. 2012;23(4-5):193-206. 81. Yusuf Özbal. (2000). Temel İmmünoloji. İstanbul: Nobel Tıp Kitabevi. 82. Perini F, D'Andrea G, Galloni E, Pignatelli F, Billo G, Alba S, et al. Plasma cytokine levels in migraineurs and controls. Headache. 2005;45(7):926-31. 83. Hansen JF, Bendtzen K, Boas M, Frederiksen H, Nielsen CH, Rasmussen AK, et al. Influence of phthalates on cytokine production in monocytes and macrophages: a systematic review of experimental trials. PLoS One. 2015;10(3):e0120083. 84. Önder F. KE. İnterlökinlerin Biyolojik Etkileri. Yüzüncü Yıl Üniversitesi Sağlık Bilimleri Dergisi. 2006; 9(1):127-38. 85. Mashayekhi Goyonlo V, Elnour H, Nordlind K. Interleukin-2 expression in lupoid and usual types of old world cutaneous leishmaniasis. Iran Red Crescent Med J. 2014;16(11):e5410. 86. Özcan C. HA, Gülcüler M. Sepsis ve İnflamasyon Mediatörleri. Turgut Özal Tıp Merkezi Dergisi. 1996;3(4):374-81. 87. Kiguchi N, Kobayashi Y, Saika F, Sakaguchi H, Maeda T, Kishioka S. Peripheral interleukin-4 ameliorates inflammatory macrophage-dependent neuropathic pain. Pain. 2015;156(4):684-93. 88. Abdul Rahim SN, Ho GY, Coward JI. The role of interleukin-6 in malignant mesothelioma. Transl Lung Cancer Res. 2015;4(1):55-66. 89. Schneiders J, Fuchs F, Damm J, Herden C, Gerstberger R, Soares DM, et al. The transcription factor nuclear factor interleukin 6 mediates pro- and anti-inflammatory responses during LPS-induced systemic inflammation in mice. Brain Behav Immun. 2015. 90. Seyhun Y, Ciftci HS, Kekik C, Karadeniz MS, Tefik T, Nane I, et al. Genetic association of interleukin-2, interleukin-4, interleukin-6, transforming growth factor-beta, tumour necrosis factor-alpha and blood concentrations of calcineurin inhibitors in Turkish renal transplant patients. Int J Immunogenet. 2015. 91. Lin E, Calvano SE, Lowry SF. Inflammatory cytokines and cell response in surgery. Surgery. 2000;127(2):117-26. 92. Narayanan N, Thirugnanasambantham P, Viswanathan S, Kannappa Reddy M, Vijayasekaran V, Sukumar E. Antipyretic, antinociceptive and anti-inflammatory activity of Premna herbacea roots. Fitoterapia. 2000;71(2):147-53. 93. Dağoğlu T., Ovalı F., Samancı N. (2000). Neonatoloji. İstanbul: Nobel Tıp Kitabevi. 94. Pascual-Camps I, Hernandez-Martinez P, Monje-Fernandez L, Dolz-Marco R, Gallego-Pinazo R, Wu L, et al. Update on intravitreal anti-tumor necrosis factor alpha therapies for ocular disorders. J Ophthalmic Inflamm Infect. 2014;4:26. 95. Al-Afif A, Alyazidi R, Oldford SA, Huang YY, King CA, Haidl ID, et al. Respiratory syncytial virus infection of primary human mast cells induces the selective production of type I interferons, CXCL10, and CCL4. J Allergy Clin Immunol. 2015. 96. Tang W, Li H, Poulos TL, Silverman RB. Mechanistic Studies of Inactivation of Inducible Nitric Oxide Synthase by Amidines. Biochemistry. 2015. 97. de Morais NG, da Costa TB, Pedrosa AL, de Castro MC, da Goncalves de Albuquerque SC, Pereira VR, et al. Effect of neonatal malnutrition on expression of nitric oxide synthase enzyme, production of free radicals and in vitro viability of alveolar macrophages infected with methicillin-sensitive and methicillin-resistant Staphylococcus aureus. Eur J Nutr. 2015. 98. Lundqvist A, Magnusson LU, Ullstrom C, Krasilnikova J, Telysheva G, Dizhbite T, et al. Oregonin reduces lipid accumulation and proinflammatory responses in primary human macrophages. Biochem Biophys Res Commun. 2015;458(3):693-9. 99. Jacobsen LC, Sorensen OE, Cowland JB, Borregaard N, Theilgaard-Monch K. The secretory leukocyte protease inhibitor (SLPI) and the secondary granule protein lactoferrin are synthesized in myelocytes, colocalize in subcellular fractions of neutrophils, and are coreleased by activated neutrophils. J Leukoc Biol. 2008;83(5):1155-64. 100. Lominadze G, Powell DW, Luerman GC, Link AJ, Ward RA, McLeish KR. Proteomic analysis of human neutrophil granules. Mol Cell Proteomics. 2005;4(10):1503-21. 101. Oosterveld FGJ, Rasker JJ. Effects of Local Heat and Cold Treatment on Surface and Articular Temperature of Arthritic Knees. Arthritis Rheum. 1994;37(11):1578-82. 102. Malanga GA, Yan N, Stark J. Mechanisms and efficacy of heat and cold therapies for musculoskeletal injury. Postgrad Med. 2015;127(1):57-65. 103. Hayes K.W. (1993). Heat and Cold in the Management of Rheumatoid Arthritis. Arthritis Care and Research. 6 (3) 156-166. 104. Doğan G.E., Demir T., Orbak R. (2014) Periodontolojide Düşük Doz Lazer Uygulamaları. Marmara Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 4 (1), 43-50. 105. A. Landucci, A. C. Wosny, L. C. Uetanabaro, A. Moro, M. R. Araujo: Efficacy of a single dose of low-level laser therapy in reducing pain, swelling, and trismus following third molar extraction surgery. Int. J. Oral Maxillofac. Surg. 2016; 45: 392–398. 106. M. J. S. Cunha, L. A. Esper, M. C. Sbrana, C. C. S. Cirino, P. G. F. P. Oliveira, A. L. P. F. Almeida. Evaluation of the Effectiveness of Diode Laser on Pain and Edema in Individuals With Cleft Lip and Palate Submitted to Secondary Bone Graft. The Cleft Palate Craniofacial Journal. 2013. 50(5). 92–97. 107. Shimizu N, Yamaguchi M, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y. ( 1995). Inhibition of prostaglandin E2 and interleukin 1-beta production by low-power laser irradiation in stretched human periodontal ligament cells. J Dent Res. 74(7) 1382-1388. . 108. Nomura K, Yamaguchi M, Abiko Y. (2001). Inhibition of interleukin-1beta production and gene expression in human gingival fibroblasts by low-energy laser irradiation. Lasers Med Sci. 16(3) 218-223. . 109. Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B. Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol. 2003;30(4):353-8. 110. Eduardo CD, de Freitas PM, Esteves-Oliveira M, Aranha ACC, Ramalho KM, Simoes A, et al. Laser phototherapy in the treatment of periodontal disease. A review. Laser Med Sci. 2010;25(6):781-92. 111. Pfitzner A, Sigusch BW, Albrecht V, Glockmann E. Killing of periodontopathogenic bacteria by photodynamic therapy. J Periodontol. 2004;75(10):1343-9. 112. Marjoribanks J, Ayeleke RO, Farquhar C, Proctor M. Nonsteroidal anti-inflammatory drugs for dysmenorrhoea. Cochrane Database Syst Rev. 2015;7:CD001751. 113. Bendtsen L, Ashina S, Moore A, Steiner TJ. Muscles and their role in episodic tension-type headache: implications for treatment. Eur J Pain. 2015. 114. Auriel E, Regev K, Korczyn AD. Nonsteroidal anti-inflammatory drugs exposure and the central nervous system. Handb Clin Neurol. 2014;119:577-84. 115. Moore N, Pollack C, Butkerait P. Adverse drug reactions and drug-drug interactions with over-the-counter NSAIDs. Ther Clin Risk Manag. 2015;11:1061-75. 116. Walker SM. Pain after surgery in children: clinical recommendations. Curr Opin Anaesthesiol. 2015. 117. Bianchi G, Molfetta L, Saggini R. Italian survey on the use of anti-inflammatory drugs in osteoarthritis. Int J Immunopathol Pharmacol. 2014;27(4):467-71. 118. Fonseca MD, Cunha FQ, Kashfi K, Cunha TM. NOSH-aspirin (NBS-1120), a dual nitric oxide and hydrogen sulfide-releasing hybrid, reduces inflammatory pain. Pharmacol Res Perspect. 2015;3(3):e00133. 119. Malvar Ddo C, Soares DM, Fabricio AS, Kanashiro A, Machado RR, Figueiredo MJ, et al. The antipyretic effect of dipyrone is unrelated to inhibition of PGE(2) synthesis in the hypothalamus. Br J Pharmacol. 2011;162(6):1401-9. 120. Liu C, Fonken LK, Wang A, Maiseyeu A, Bai Y, Wang TY, et al. Central IKKbeta inhibition prevents air pollution mediated peripheral inflammation and exaggeration of type II diabetes. Part Fibre Toxicol. 2014;11:53. 121. Ruiter JD. Non Steroid Antiinflamatuar Drugs. Principles Of Drug Action. 2002;2. 122. Atkinson TJ, Fudin J, Jahn HL, Kubotera N, Rennick AL, Rhorer M. What's new in NSAID pharmacotherapy: oral agents to injectables. Pain Med. 2013;14 Suppl 1:S11-7. 123. Akashi M, Ando T, Hamashima T, Yoshita H, Nanjo S, Mihara H, et al. Multiple Colon Ulcers with Typical Small Intestinal Lesions Induced by Non-Steroidal Anti-Inflammatory Drugs. Intern Med. 2015;54(16):1995-9. 124. Sanchez M. B. Clinical Management Of Nonsteroidal Anti-inflammatory Drug Hypersensitivity. World Allergy Organization Journal. 2008;1(2). 125. Okyar A. OY, Güngör S. Novel Formulation Approaches for Dermal and Transdermal Delivery of Non-Steroidal Anti-Inflammatory Drugs Rheumatoid Arthritis - Treatment. 2012;ISBN 978-953-307-850-2. 126. Antman EM, Bennett JS, Daugherty A, Furberg C, Roberts H, Taubert KA. Use of nonsteroidal Antiinflammatory drugs an update for clinicians - A scientific statement from the American Heart Association. Circulation. 2007;115(12):1634-42. 127. Seremwe M, Schnellmann RG, Bollag WB. Calpain-10 Activity Underlies Angiotensin II-Induced Aldosterone Production in an Adrenal Glomerulosa Cell Model. Endocrinology. 2015;156(6):2138-49. 128. Labrie F, Belanger A, Cusan L, Gomez JL, Candas B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab. 1997;82(8):2396-402. 129. Sidiropoulou E, Ghizzoni L, Mastorakos G. Adrenal Androgens. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth (MA)2000. 130. Cushman I. The renin-angiotensin-aldosterone system: increasingly complex and prevalent. MLO Med Lab Obs. 2015;47(3):14, 6. 131. Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci. 2015;9:25. 132. Maheshwari M, Bhutani S, Das A, Mukherjee R, Sharma A, Kino Y, et al. Dexamethasone induces heat shock response and slows down disease progression in mouse and fly models of Huntington's disease. Hum Mol Genet. 2014;23(10):2737-51. 133. Dural E.(2000).Farmakoloji.İstanbul:Nobel Tıp Kitabevleri. 134. Bartz SK, Karaviti LP, Brandt ML, Lopez ME, Masand P, Devaraj S, et al. Residual manifestations of hypercortisolemia following surgical treatment in a patient with Cushing syndrome. Int J Pediatr Endocrinol. 2015;2015(1):19. 135. Wallner BP, Mattaliano RJ, Hession C, Cate RL, Tizard R, Sinclair LK, et al. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986;320(6057):77-81. 136. Flower RJ, Rothwell NJ. Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci. 1994;15(3):71-6. 137. Gutsol AA, Sokhonevich NA, Iurova KA, Haziakhmatova OG, Shupletsova VV, Litvinova LS. [Dose-dependent effects of dexamethasone on functional activity of T-lymphocytes different grade of differentiation]. Mol Biol (Mosk). 2015;49(1):149-57. 138. Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms. Trends Pharmacol Sci. 1993;14(12):436-41. 139. Chuang TD, Pearce WJ, Khorram O. miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids. Am J Physiol Cell Physiol. 2015;309(2):C117-25. 140. Bondugulapati LN, Campbell C, Chowdhury SR, Goetz P, Davies JS, Rees DA, et al. Use of day 1 early morning cortisol to predict the need for glucocorticoid replacement after pituitary surgery. Br J Neurosurg. 2015:1-4. 141. Gupta P, Bhatia V. Corticosteroid physiology and principles of therapy. Indian J Pediatr. 2008;75(10):1039-44. 142. Lee J, Kim EJ, Kong HS, Youm HW, Lee JR, Suh CS, et al. A combination of simvastatin and methylprednisolone improves the quality of vitrified-warmed ovarian tissue after auto-transplantation. Hum Reprod. 2015. 143. Ference JD, Last AR. Choosing topical corticosteroids. Am Fam Physician. 2009;79(2):135-40. 144. Edilby GI, Canniff JP, Harris M. A Double-Blind Placebo-Controlled Trial of the Effects of Dexamethasone on Postoperative Swelling. J Dent Res. 1982;61(4):556-. 145. Majid OW, Mahmood WK. Effect of submucosal and intramuscular dexamethasone on postoperative sequelae after third molar surgery: comparative study. Br J Oral Maxillofac Surg. 2011;49(8):647-52. 146. Wattwil M, Thorn SE, Lovqvist A, Wattwil L, Gupta A, Liljegren G. Dexamethasone is as effective as ondansetron for the prevention of postoperative nausea and vomiting following breast surgery. Acta Anaesthesiol Scand. 2003;47(7):823-7. 147. Assante J, Collins S, Hewer I. Infection Associated With Single-Dose Dexamethasone for Prevention of Postoperative Nausea and Vomiting: A Literature Review. AANA J. 2015;83(4):281-8. 148. Carlos G. UP, Fernandez-Penas P. Rational use of topical corticosteroids. Australian Prescriber. 2013;36(5). 149. Uhlig G, Seifert J. [The effect of proteolytic enzymes (traumanase) on posttraumatic edema]. Fortschr Med. 1981;99(15):554-6. 150. Macalister AD. Buccally administered streptokinase: a double blind study. Aust Dent J. 1966;11(3):165-7. 151. Chappi DM, Suresh KV, Patil MR, Desai R, Tauro DP, Bharani KNSS, et al. Comparison of clinical efficacy of methylprednisolone and serratiopeptidase for reduction of postoperative sequelae after lower third molar surgery. J Clin Exp Dent. 2015;7(2):e197-202. 152. Sowray, J. H. (1961) An Assessment Of The Valve Of Lyophilised Chymotrypsin In The Reduction Of Postoperative Swelling Following The Removal Of Impacted Wisdom Teeth. British Dental Journal, 111, 130-133. 153. Buhren BA, Schrumpf H, Hoff NP, Bolke E, Hilton S, Gerber PA. Hyaluronidase: from clinical applications to molecular and cellular mechanisms. Eur J Med Res. 2016;21. 154. Guo X, Shi Y, Sheng J, Wang F. A novel hyaluronidase produced by Bacillus sp. A50. PLoS One. 2014;9(4):e94156. 155. Rowlett J. Extravasation of contrast media managed with recombinant human hyaluronidase. Am J Emerg Med. 2012;30(9):2102 e1-3. 156. Muchmore DB, Vaughn DE. Review of the mechanism of action and clinical efficacy of recombinant human hyaluronidase coadministration with current prandial insulin formulations. J Diabetes Sci Technol. 2010;4(2):419-28. 157. Spandorfer PR, Mace SE, Okada PJ, Simon HK, Allen CH, Spiro DM, et al. A randomized clinical trial of recombinant human hyaluronidase-facilitated subcutaneous versus intravenous rehydration in mild to moderately dehydrated children in the emergency department. Clin Ther. 2012;34(11):2232-45. 158. Mace SE, Harb G, Friend K, Turpin R, Armstrong EP, Lebel F. Cost-effectiveness of recombinant human hyaluronidase-facilitated subcutaneous versus intravenous rehydration in children with mild to moderate dehydration. Am J Emerg Med. 2013;31(6):928-34. 159. Knight E, Carne E, Novak B, El-Shanawany T, Williams P, Pickersgill T, et al. Self-administered hyaluronidase-facilitated subcutaneous immunoglobulin home therapy in a patient with primary immunodeficiency. J Clin Pathol. 2010;63(9):846-7. 160. Carne E, Ponsford M, El-Shanawany T, Williams P, Pickersgill T, Jolles S. Five years of self-administered hyaluronidase facilitated subcutaneous immunoglobulin (fSCIg) home therapy in a patient with primary immunodeficiency. J Clin Pathol. 2015. 161. Shpilberg O, Jackisch C. Subcutaneous administration of rituximab (MabThera) and trastuzumab (Herceptin) using hyaluronidase. Br J Cancer. 2013;109(6):1556-61. 162. Dychter SS, Harrigan R, Bahn JD, Printz MA, Sugarman BJ, DeNoia E, et al. Tolerability and pharmacokinetic properties of ondansetron administered subcutaneously with recombinant human hyaluronidase in minipigs and healthy volunteers. Clin Ther. 2014;36(2):211-24. 163. Thomas JR, Yocum RC, Haller MF, Flament J. The INFUSE-Morphine IIB study: use of recombinant human hyaluronidase (rHuPH20) to enhance the absorption of subcutaneous morphine in healthy volunteers. J Pain Symptom Manage. 2009;38(5):673-82. 164. Schulenburg HE, Sri-Chandana C, Lyons G, Columb MO, McLure HA. Hyaluronidase reduces local anaesthetic volumes for sub-Tenon's anaesthesia. Br J Anaesth. 2007;99(5):717-20. 165. Kozak I, Kayikcioglu OR, Cheng L, Falkenstein I, Silva GA, Yu DX, et al. The effect of recombinant human hyaluronidase on dexamethasone penetration into the posterior segment of the eye after sub-Tenon's injection. J Ocul Pharmacol Ther. 2006;22(5):362-9. 166. Nekoroski T, Paladini RD, Sauder DN, Frost GI, Keller GA. A recombinant human hyaluronidase sustained release gel for the treatment of post-surgical edema. Int J Dermatol. 2014;53(6):777-85. 167. World Health Organization.WHO Guidelines on Transmissible Spongiform Encephalopathies in Relation to Biological and Pharmaceutical Products. 2003. 168. Rosengren S, Dychter SS, Printz MA, Huang L, Schiff RI, Schwarz HP, et al. Clinical Immunogenicity of rHuPH20, a Hyaluronidase Enabling Subcutaneous Drug Administration. Aaps J. 2015;17(5):1144-56. 169. Dunn AL, Heavner JE, Racz G, Day M. Hyaluronidase: a review of approved formulations, indications and off-label use in chronic pain management. Expert Opin Biol Ther. 2010;10(1):127-31. 170. Muchmore DB, Vaughn DE. Accelerating and improving the consistency of rapid-acting analog insulin absorption and action for both subcutaneous injection and continuous subcutaneous infusion using recombinant human hyaluronidase. J Diabetes Sci Technol. 2012;6(4):764-72. 171. Suleyman H, Demirezer LO, Kuruuzum A, Banoglu ZN, Gocer F, Ozbakir G, et al. Antiinflammatory effect of the aqueous extract from Rumex patientia L. roots. J Ethnopharmacol. 1999;65(2):141-8. 172. Cosgrove KA, Alon G, Bell SF, Fischer SR, Fowler NR, Jones TL, et al. The electrical effect of two commonly used clinical stimulators on traumatic edema in rats. Phys Ther. 1992;72(3):227-33. 173. İlter I., Akyıl S., Koç M., Kaymak F. E. (2016). Alglerden Elde Edilen Stabilize Edici Maddeler. Academic Food Journal. 14(3): 315-321. 174. Olajide OA, Makinde JM, Okpako DT, Awe SO. Studies on the anti-inflammatory and related pharmacological properties of the aqueous extract of Bridelia ferruginea stem bark. J Ethnopharmacol. 2000;71(1-2):153-60. 175. Kasahara Y, Hikino H, Tsurufuji S, Watanabe M, Ohuchi K. Antiinflammatory actions of ephedrines in acute inflammations. Planta Med. 1985(4):325-31. 176. Santos FA, Rao VS. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res. 2000;14(4):240-4. 177. Matsumoto K, Obara S, Kuroda Y, Kizu J. Anti-inflammatory effects of linezolid on carrageenan-induced paw edema in rats. J Infect Chemother. 2015. 178. Mansouri MT, Hemmati AA, Naghizadeh B, Mard SA, Rezaie A, Ghorbanzadeh B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J Pharmacol. 2015;47(3):292-8. 179. Solanki HK, Shah DA, Maheriya PM, Patel CA. Evaluation of anti-inflammatory activity of probiotic on carrageenan-induced paw edema in Wistar rats. Int J Biol Macromol. 2015;72:1277-82. 180. Carlson RP, O'Neill-Davis L, Chang J, Lewis AJ. Modulation of mouse ear edema by cyclooxygenase and lipoxygenase inhibitors and other pharmacologic agents. Agents Actions. 1985;17(2):197-204. 181. Liu S, Liu Y, Deng S, Guo A, Wang X, Shen G. Beneficial effects of hyperbaric oxygen on edema in rat hippocampus following traumatic brain injury. Exp Brain Res. 2015. 182. Schilte C, Bouzat P, Millet A, Boucheix P, Pernet-Gallay K, Lemasson B, et al. Mannitol Improves Brain Tissue Oxygenation in a Model of Diffuse Traumatic Brain Injury. Crit Care Med. 2015;43(10):2212-8. 183. Ohnishi S.T., Ohnishi T. (1995) Central Nervous System Trauma Reseach Techniques, New York: CRC Press. 184. Sakat SS, Mani K, Demidchenko YO, Gorbunov EA, Tarasov SA, Mathur A, et al. Release-active dilutions of diclofenac enhance anti-inflammatory effect of diclofenac in carrageenan-induced rat paw edema model. Inflammation. 2014;37(1):1-9. 185. Lanhers MC, Fleurentin J, Dorfman P, Mortier F, Pelt JM. Analgesic, antipyretic and anti-inflammatory properties of Euphorbia hirta. Planta Med. 1991;57(3):225-31. 186. Capuzzi P, Montebugnoli L, Vaccaro MA. Extraction of impacted third molars. A longitudinal prospective study on factors that affect postoperative recovery. Oral Surg Oral Med Oral Pathol. 1994;77(4):341-3. 187. Hyrkas T, Ylipaavalniemi P, Oikarinen VJ, Paakkari I. A comparison of diclofenac with and without single-dose intravenous steroid to prevent postoperative pain after third molar removal. J Oral Maxillofac Surg. 1993;51(6):634-6. 188. Kim K, Brar P, Jakubowski J, Kaltman S, Lopez E. The use of corticosteroids and nonsteroidal antiinflammatory medication for the management of pain and inflammation after third molar surgery: a review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(5):630-40. 189. Schmelzeisen R, Frolich JC. Prevention of postoperative swelling and pain by dexamethasone after operative removal of impacted third molar teeth. Eur J Clin Pharmacol. 1993;44(3):275-7. 190. Seymour RA, Moore U, Hawkesford J, Coulthard P, Jackson-Leech D, Thomas D, et al. An investigation into the efficacy of intravenous diclofenac in post-operative dental pain. Eur J Clin Pharmacol. 2000;56(6-7):447-52. 191. Feitosa RF, Melciades GB, Assreuy AM, Rocha MF, Ribeiro RA, Lima AA. The pharmacological profile of ovalbumin-induced paw oedema in rats. Mediators Inflamm. 2002;11(3):155-63. 192. Duncan GS, Peers SH, Carey F, Forder R, Flower RJ. The local anti-inflammatory action of dexamethasone in the rat carrageenin oedema model is reversed by an antiserum to lipocortin 1. Br J Pharmacol. 1993;108(1):62-5. 193. Kagan L, Mager DE. Mechanisms of Subcutaneous Absorption of Rituximab in Rats. Drug Metab Dispos. 2013;41(1):248-55. 194. Campos MM, Mata LV, Calixto JB. Expression of B1 kinin receptors mediating paw edema and formalin-induced nociception. Modulation by glucocorticoids. Can J Physiol Pharmacol. 1995;73(7):812-9. 195. Dornelles FN, Santos DS, Van Dyke TE, Calixto JB, Batista EL, Jr., Campos MM. In vivo up-regulation of kinin B1 receptors after treatment with Porphyromonas gingivalis lipopolysaccharide in rat paw. J Pharmacol Exp Ther. 2009;330(3):756-63. 196. Vazquez B, Avila G, Segura D, Escalante B. Antiinflammatory activity of extracts from Aloe vera gel. J Ethnopharmacol. 1996;55(1):69-75. 197. Archer AC, Muthukumar SP, Halami PM. Anti-inflammatory potential of probiotic Lactobacillus spp. on carrageenan induced paw edema in Wistar rats. International Journal of Biological Macromolecules. 2015;81:530-7. 198. Arzi A, Olapour S, Yaghooti H, Karampour NS. Effect of Royal Jelly on Formalin Induced-Inflammation in Rat Hind Paw. Jundishapur J Nat Ph. 2015;10(1). 199. Adams L. Adjuvants to local anaesthesia in ophthalmic surgery. Br J Ophthalmol. 2011;95(10):1345-9. 200. Stair S, Carlson KW, Shuster S, Wei ET, Stern R. Mystixin peptides reduce hyaluronan deposition and edema formation. Eur J Pharmacol. 2002;450(3):291-6.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/3231
dc.description.abstractEdema is a complication which may cause non-healing of epithelium lines, lessen the function and failing at the surgical operation. Today there are so many medications and ways to prevent edema due to surgical operations. But non of these ways and medications supresses the surgical edema at the desired level. At our study we aimed to reduce the operative edema which is named exudates of intercellular substance, by hyaluronidase enzyme which fasten the pass of the fluids from intercellular substance to systemic circulation. That activity of hyaluronidase enzyme is compared with deksamethasone’s which has the highest antiinflamatuar potency between glucocorticoids. As hyaluronidase enzyme, recombinant human hyaluronidase (rHuPH20) is used because of avoiding allergic reactions due to animal derived hyaluronidase preparats. 40 Sprague-Dawley albino rats divided randomly 5 equal groups. At 1. group just traumatic edema was made on 8 rats. At 2. group traumatic edema was made and 0.4 ml SF injected to the right hind paws of the rats. At 3. group 0.4 ml hyaluronidase injected to the right hind paws of the rats. At 4. group 0.4 ml deksamethasone injected to the right hind paws of the rats in the same way. At 5. group 0.4 ml deksamethasone-hyaluronidase combine injected to the right hind paws of the rats. The dosage of the medicines calculated according to weights of the rats. Because all fluids which are injected to the paws of the rats must be at the same volume, all medicines are completed to 0.4 ml by SF. All the rats’ right hind paws volume evaluated by plethysmometer before starting the traumatic edema formation and after it at the 3., 6., 12., 24., 48., 72., hours. As a result of statistical analysis deksamethasone didn’t significantly diminished the edema according to group 1, but significantly diminished the edema according to SF applicated group 2. Besides this, hyaluronidase significantly reduced the edema according to group 1 and 2. When hyaluronidase compared with dexamethasone, it had been shown hyaluronidase significantly reduces edema according to dexamethasone. Hyaluronidase-dexamethasone’s combine application provides less edema with regard to alone hyaluronidase application, but this difference isn’t significant. As a result of this study hyaluronidase enzyme may provide more better edema control than deksamethasone which is widely using effective agent for managing edema.en
dc.description.tableofcontentsONAY SAYFASI iii YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI iv ETIK BEYAN SAYFASI v TEŞEKKÜR vi ÖZET vii ABSTRACT viii İÇİNDEKİLER ix SİMGELER VE KISALTMALAR xi ŞEKİLLER xiv TABLOLAR xv 1. GİRİŞ 1 2. GENEL BİLGİLER 3 2.1. Yara İyileşmesi 3 2.1.1. İnflamatuar Faz 3 2.1.2. Proliferatif Faz 4 2.1.3. Remodelasyon Fazı 5 2.2. İnflamasyon 5 2.2.1. Akut İnflamasyon 7 2.2.2. Kronik İnflamasyon 8 2.2.3. İnflamasyonda Rol Alan Mediatörler 8 2.2.4. Post Travmatik ve Post Operatif Ödemi Giderme Amacıyla Kullanılan Ajanlar ve Yöntemler 22 2.2.5. Ödem Oluşturma Modelleri ve Hacmini Hesaplama Yöntemleri 40 3. GEREÇ ve YÖNTEM 46 3.1. Deney Hayvanları 46 3.2. Kullanılan Kimyasallar ve Ajanlar 48 3.3. Araç ve Gereçler 48 3.4. Deney Grupları ve Yöntem 49 3.4.1. Deney Grupları 49 3.4.2. Deneysel Ödem Oluşturma Modeli 51 3.4.3. Ödemi Değerlendirme Yöntemi 53 3.5. İstatistiksel Analiz 56 4. BULGULAR 58 5. TARTIŞMA 73 6. SONUÇ 81 7. KAYNAKLAR 83 8. EKLER 98 9. ÖZGEÇMİŞ 99tr_TR
dc.language.isoturtr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectRekombinant insan hyaluronidazı (rHuPH20) travmatik ödemtr_TR
dc.subjectdeksametazon hyaluronidaz antiödem etkinlik karşılaştırılması
dc.titleRekombinant İnsan Hyaluronidazının (rHuPH20) Post Travmatik Ödeme Etkisinin Deksametazonla Karşılaştırmalı Olarak İncelenmesitr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesisen
dc.description.ozetÖdem, cerrahi operasyonlar sonrasında yara dudaklarının açılmasına sebep olabilen, fonksiyonda kısıtlılık yaratan ve işlemin başarısızlıkla sonuçlanmasına yol açabilen bir komplikasyondur. Günümüzde cerrahi işlemler sonrasında ödem oluşumunun önüne geçmek amacıyla kullanılmakta olan birçok ajan ve yöntem bulunmaktadır. Ancak bu ajan ve yöntemlerin hiçbiriyle istenilen kontrol sağlanamamıştır. Çalışmamızda dokulararası sıvıların sistemik dolaşıma çok daha hızlı bir şekilde geçmesini sağlayan hyaluronidaz enzimi ile dokulararası boşlukta eksuda birikimi olarak tanımlanan ödemin sistemik dolaşıma hızlı geçişinin sağlanmasıyla önlenmesi hedeflenmektedir. Çalışmamızda hyaluronidaz enziminin bu etkinliği, en yüksek antiinflamatuar potense sahip glukokortikoid olan deksametazonunkiyle karşılaştırıldı. Hyaluronidaz enzimi olarak hayvansal hyaluronidazlar kullanıldığında hastalarda yaşanan allerjik reaksiyon gelişme komplikasyonunu mimimuma indirmek amacıyla rekombinant teknolojiyle üretilmiş insan hyaluronidazı (rHuPH20) kullanıldı. 40 adet Sprague-Dawley cinsi albino rat, rastgele 5 eşit gruba ayrıldı. 1. gruptaki 8 ratta sadece travmatik ödem oluşturuldu. 2. gruptaki ratlarda travmatik ödem oluşturularak sağ arka pençelerine 0.4 ml SF uygulandı. 3. gruptaki ratların sağ arka pençelerine 0.4 ml hyaluronidaz uygulandı. 4. gruptaki ratlara 0.4 ml deksametazon aynı şekilde uygulandı. 5. gruptaki ratların pençelerine 0.4 ml deksametazon-hyaluronidaz kombine verildi. İlaç dozları ratların kilolarına göre hesaplandı. Eşit hacimde olmaları için SF ile seyreltilip 0.4 ml’ye tamamlanarak hayvanlara uygulandı. Ratların ilk pençe hacimleriyle, 3., 6., 12., 24., 48. ve 72. saatlerdeki pençe hacmi değişimleri pletismometreyle ölçüldü. Yapılan istatistiksel analizler sonucunda deksametazonun hiçbir sıvı verilmeyen gruptan anlamlı düzeyde ödemi azaltmayıp, aynı hacimde serum verilen gruba göre anlamlı olarak ödemi azalttığı görülmüştür. Bunun yanında hyaluronidaz enziminin, hiçbir sıvı uygulanmayan ve serum uygulanan gruplardan anlamlı düzeyde ödemi azalttığı gözlenmiştir. Deksametazonla hyaluronidaz enzimi karşılaştırıldığında enzimin, deksametazona göre anlamlı düzeyde daha düşük ödem oluşumu sağladığı gösterilmiş, deksametazon-hyaluronidaz’ın kombine uygulanışının sadece hyaluronidaz uygulamadan anlamlı olmayacak düzeyde daha düşük ödem oluşumu sağladığı görülmüştür. Bu çalışmadan çıkarıldığı üzere hyaluronidaz enzimi, ödem kontrolü için en etkili ajanlardan biri olarak kullanılan deksametazondan çok daha iyi bir ödem kontrolü sağlayabilir.tr_TR
dc.contributor.departmentAğız Diş ve Çene Cerrahisitr_TR
dc.contributor.authorIDTR166741tr_TR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record