Basit öğe kaydını göster

dc.contributor.advisorKarabulut, İsmail
dc.contributor.advisorCansaran Duman, Demet
dc.contributor.authorDinçsoy, Adnan Berk
dc.date.accessioned2017-01-12T06:26:11Z
dc.date.available2017-01-12T06:26:11Z
dc.date.issued2017
dc.date.submitted2017-01-04
dc.identifier.citation1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013; 63(1):11–30. 2. Abu N, Mohamed NE, Yeap SK, Lim KL, Akhtar MN, Zulfadli AJ, et al. İn vivo antitumor and antimetastatic effects of flavokawain B in 4T1 breast cancer cell-challenged mice. Drug Design, Development and Therapy. 2015; 9:1401– 1417. 3. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer, Breast Cancer Chemosensitivity, In: Yu D. and Hung M.C. (ed.), Chapter 1, Springer, New York, USA, 2007; 1-22. ISBN: 978-0-387-74037-9. 4. Karlığa B, Talınlı N. 3'-N-Tiyokarbamat paklitaksel türevlerinin sentezi ve biyolojik aktivite çalışmaları. Fen Bilimleri GTÜ Dergisi. 2004; 2(1): 25-30. 5. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl. Acad. Sci. 1980; 77:1561–1565. 6. Ingolfsdottir K. Usnic acid. Phytochemistry. 2002; 61:729-736. 7. Mayer M, O’Neill MA, Murray KE, Santos-Magalhaes NS, Carneiro-Leao AM, Thompson AM, et al. Usnic acid: a non-genotoxic compound with anti-cancer properties. Anti-cancer Drugs. 2005; 16:805–809. 8. O’Neill MA, Mayer M, Murray KE, Rolim-Santos HML, Santos-Magalhaes NS, Thompson AM, et al. Does usnic acid affect microtubules in human cancer cells? Braz. J. Biol. 2010: 70(3);659-664. 9. Campanella L, Delfini M, Ercole P, Iacoangeli A, Risuleo G. Molecular characterization and action of usnic acid: a drug that inhibits proliferation of mouse polyomavirus in vitro and whose main target is RNA transcription. Biochimie. 2002; 84:329–334. 10. Manojlovic NT, Vasiljevic PJ, Maskovic PZ, Juskovic M, Bogdanovic- Dusanovic G. Chemical composition, antioxidant, and antimicrobial activities of lichen Umbilicaria cylindrica (L.) Delise (Umbilicariaceae). Evid Based Complement Alternat Med. 2012;1–8. 11. Halici M, Odabasoglu F, Suleyman H, Cakir A, Aslan A, Bayir Y. Effects of water extract of Usnea longissima on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Phytomedicine. 2005; 12:656–662. 12. Odabasoglu F, Cakir A, Suleyman H, Aslan A, Bayir Y, Halici M, et al. Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. J Ethnopharmacol. 2006; 103:59–65. 13. Brisdelli F, Perilli M, Sellitri D, Piovano M, Garbarino JA, Nicoletti M, et al. Cytotoxic activity and antioxidant capacity of purified lichen metabolites: an in vitro study. Phytother Res. 2013; 27(3):431–437. 14. Otsuka H, Komiya T, Tsukumi M, Toyosato T, Fujimura H. Studies on anti- inflammatory drugs. Anti-inflammatory activity of crude drugs and plants (II). J. Takeda Res. Lab. 1972; 31:247. 15. Yamamoto R, Miyase T, Ueno A. Stachys saponins I–VIII, new oleananetype triterpene saponins from Stachys riederi Chamisso. Chemical and Pharmacological Bulletin. 1994; 42:1291-1296. 16. Okuyama E, Umeyama K, Yamazaki M, Kinoshit Y, Yamamoto Y. Usnic acid and diffractaic acid as analgesic and antipyretic components of Usnea diffracta. Planta Med. 1995; 61:113. 17. Kumar S, Muller K. Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophoric, usnic, and diffractaic acid on human keratinocyte growth. J. Nat. Prod. 1999; 62:821-823. 18. Pramyothin P, Janthasoot W, Pongnimitprasert N, Phrukudom S, Ruangrungsi N. Hepatotoxic effect of (+) usnic acid from Usnea siamensis Wainio in rats, isolated rat hepatocytes and isolated rat liver mitochondria. Journal of Ethnopharmacology. 2004; 90:381-387. 19. Odabaşoğlu F, Aslan A, Çakır A, Süleyman H, Karagöz Y, Halıcı M. Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research. 2004; 18(11):938-41. 20. Odabaşoğlu F, Çakır A, Süleyman H, Aslan A, Bayır Y, Halıcı M, et al. Gastroprotective and antioxidant effects of usnic acid on indomethacin-induced gastric ulcer in rats. Journal of ethnopharmacology. 2006; 103(1):59-65. 21. Honda NK, Pavan FR, Coelho RG, deAndradeLeite SR, Micheletti AC, Lopes TIB, et al. Anti mycobacterial activity of lichen substances. Phytomedicine. 2010; 17:328-332. 22. Cansaran-Duman D. Türkiye’de bazı liken türlerindeki usnik asitin HPLC yöntemi ile değerlendirilmesi ve antimikrobiyal aktiviteleri. Turk Hij Den Biyol Derg. 2010; 66(4):153-60. 23. Cansaran-Duman D, Halıcı MG. Antimicrobial activity of usnic acid on Squamarina lentigera lichen species. Turk Hij Den Biyol Derg. 2012; 69(3):127- 34. 24. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015; 136:E359-E386. 25. Türkiye Sağlık İstatistikleri. T.C. Sağlık Bakanlığı Türkiye Halk Sağlığı Kurumu. Ankara, 2016. 26. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11. Lyon, France: International Agency for Research on Cancer; 2013. [Erişim Tarihi 25 Kasım 2016]. Erişim Adresi: http://globocan.iarc.fr. 27. Manual of Breast Diseases. Ed: Ismail Jatoi. Lippincott Williams & Wilkins. 2002. 28. Halperin EC, Perez CA, Brady LW. Early Stage Breast Cancer, Perez and Brady's Principles and Practice of Radiation Oncology. 5th ed. Philadelphia: Lippincott; 2008; 1179. 29. Casciato DA, Territo MC. Manual of Clinical Oncology 6th Edition. Lippincott Williams & Wilkins 2009; 237-65. 30. Sarkar S, Mandal M. Breast Cancer: Classification Based on Molecular Etiology Influencing Prognosis and Prediction, Breast Cancer-Focusing Tumor Microenvironment, Stem cells and Metastasis. In: Gunduz M, editors. Chapter 4, InTech, Rijeka, Croatia, 2011; 69-84. 31. Eliyatkın N, Yalçın E, Zengel B, Aktaş S, Vardar E. Molecular Classification of Breast Carcinoma: From Traditional, Old-Fashioned Way to A New Age, and A New Way. J Breast Health. 2015; 11:59-66. 32. Fisher B, Anderson S, Redmond CK, Wolmark N, Wickerham DL, Cronin WM. Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med. 1995; 333(22):1456-1461. 33. Cuzick J, Stewart H, Rutqvist L, Houghton J, Edwards R, Redmond C, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol. 1994; 12(3):447- 453. 34. Smith IE, Dowsett M. Aromatase inhibitors in breast cancer. N Engl J Med. 2003; 348(24):2431-2442. 35. Jordan VC, O'Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol. 2007; 25(36):5815-5824. 36. Lonning PE, Taylor PD, Anker G, Iddon J, Wie L, Jorgensen LM, et al. High- dose estrogen treatment in postmenopausal breast cancer patients heavily exposed to endocrine therapy. Breast Cancer Res Treat. 2001; 67(2):111-116. 37. Bese NS, Iribas A, Dirican A, Oksuz D, Atkovar G, Ober A. Ovarian ablation by radiation therapy: is it still an option for the ablation of ovarian function in endocrine responsive premenopausal breast cancer patients? Breast. 2009; 18(5):304-308. 38. Işık G. Meme Kanseri Tedavisinde Paklitaksel Yüklü Katyonik Siklodekstrin Nanokapsül Ve Nanoküre Formülasyonu. Hacettepe University, Ankara, Turkey, 2013. 39. De Laurentiis M, Cancello G, D'Agostino D, Giuliano M, Giordano A, Montagna E, et al. Taxane-based combinations as adjuvant chemotherapy of early breast cancer: a meta-analysis of randomized trials. J Clin Oncol. 2008; 26(1):44-53. 40. Vogel C, Chan A, Gril B, Kim SB, Kurebayashi J, Liu L, et al. Management of ErbB2-positive breast cancer: insights from preclinical and clinical studies with lapatinib. Jpn J Clin Oncol. 2010; 40(11):999-1013. 41. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. 1971; 93:2325–2327. 42. Singla AK, Garg A, Aggarwal D. Paclitaxel and Its Formulations. International Journal of Pharmaceutics. 2001; 235:179-192. 43. Panchagnula R. Pharmaceutical Aspects of Paclitaxel. International Journal of Pharmaceutics. 1998; 172:1-15. 44. Adams JD, Flora K, Goldspiel BR, Wilson JW, Finley R. Taxol: a History of Pharmaceutical Development and Current Pharmaceutical Concerns. J. Nat. Cancer Inst. Monogr. 1993; 15:141-147. 45. McGrogan BT, Gilmartin B, Carney DN, McCann A. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 2008; 1785(2):96–132. 46. Torres K, Horwitz SB. Mechanisms of taxol-induced cell death are concentration dependent. Cancer Research. 1998; 58:3620-3626. 47. Jordan MA, Wendell K, Gardiner S, Derry WB, Copp H, Wilson L. Mitotic block induced in HeLa cells by low concentrations of Paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Research. 1996; 53:816-825. 48. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979; 277:665-667. 49. Ringel I, Horwitz SB. Studies with RP 56976 (Taxotere): A semisynthetic analogue of taxol. J Natl Cancer Inst. 1991; 83:288-291. 50. Dias DA, Urban S. Phytochemical investigation of the Australian lichens Ramalina glaucescens and Xanthoria parietina. Nat Prod Commun. 2009; 4(7):959-64. 51. Singh N, Nambiar D, Kale RK, Singh RP. Usnic acid inhibits growth and induces cell cycle arrest and apoptosis in human lung carcinoma A549 cells. Nutr Cancer. 2013; 65(1):36-43. 52. Dinçsoy AB, Cansaran- Duman D. Changes in apoptosis related gene expression profiles in cancer cell line exposed to usnic acid lichen secondary metabolite. Turkish Journal Biology. 2017. Accepted for publications. 53. Lisci M, Monte M, Pacini E. Lichens and higher plants on stone: a review. Int Biodeterior Biodegrad. 2003; 51:1–17. 54. Melo MG, dos Santos JPA, Serafini MR, Caregnato FF, de Bittencourt Pasquali MA, Rabelo TK, et al. Redox properties and cytoprotective actions of atranorin, a lichen secondary metabolite. Toxicol In Vitro. 2011; 25:462–468. 55. Rabelo TK, Zeidan-Chulia F, Vasques LM, dos Santos JPA, da Rocha RF, Pasquali MAdB, et al. Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicol In Vitro. 2012; 26:304– 314. 56. Mitrovic T, Stamenkovic S, Cvetkovic V, Tosic S, Stankovic M, Radojevic I, et al. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species. Int. J. Mol. Sci. 2011; 12:5428-5448. 57. Cansaran D, Atakol O, Halıcı MG, Aksoy A. HPLC Analysis of the Usnic Acid in some Ramalina Species from Anatolia and Investigation of their Antimicrobial Activities. Pharmaceutical Biology. 2007; 45(1):77-81. 58. Cansaran D, Kahya D, Yurdakulol E, Atakol O. Identification and Quantitation of Usnic Acid from the Lichen Usnea Species of Anatolia and Antimicrobial Activity. Zeitschrift für Naturforschung C. 2006; 61c:773-776. 59. Jin JQ, Li CQ, He LC. Down-regulatory effect of usnic acid on nuclear factor- kappa B-dependent tumor necrosis factor-alpha and inducible nitric oxide synthase expression in lipopolysaccharide-stimulated macrophages RAW 264.7. Phytother Res. 2008; 22:1605-1609. 60. Einarsdottir E, Groeneweg J, Björnsdottir GG. Cellular mechanisms of the anticancer effects of the lichen compound usnic acid. Planta Med. 2010; 76(10):969-974. 61. Backorova M, Backor M, Mikes J, Jendzelovsky R, Fedorocko P. Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol. In Vitro. 2011; 25:37-44. 62. Backorova M, Jendzelovsky R, Kello M. Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol. In Vitro. 2012; 26:462-468. 63. Machado NM, de Rezende AAA, Nepomuceno JC, Tavares DC, Wilson Roberto Cunha Mario Antonio Spano. Evaluation of mutagenic, recombinogenic and carcinogenic potential of (þ)-usnic acid in somatic cells of Drosophila melanogaster. Food and Chemical Toxicology. 2016; 96:226-233. 64. Polat Z, Aydın E, Türkez H and Aslan A. In vitro risk assessment of usnic acid. Toxicology and Industrial Health 2016; 32(3):468–475. 65. Yang Y, Nguyen TT, Jeong M-H, Crişan F, Yu YH, Ha H-H, et al. Inhibitory Activity of (+)-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility. PLoS ONE. 2016; 11(1). 66. Akhmanova A, Steinmetz MO. Control of microtubule organization and dynamics: two ends in the limelight. Nature Rev. Mol. Cell Biol. 2015; 16:711- 726. 67. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell, 4th edition. New York: Garland Science. 2002. 68. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004; 4:253–265. 69. Van Vuuren RJ, Visagie MH, Theron AE, Joubert AM. Antimitotic drugs in the treatment of cancer. Cancer Chemother Pharmacol. 2015; 76:1101–1112. 70. Moudi M, Go R, Yien CY, Nazre M. Vinca alkaloids. Int J Prev Med. 2013; 4:1231–1235. 71. Barbuti AM, Chen ZS. Paclitaxel through the ages of anticancer therapy: exploring its role in chemoresistance and radiation therapy. Cancers (Basel). 2015; 7:2360–2371. 72. Zhai Y, Kronebusch PJ, Simon PM, Borisy GG. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J Cell Biol. 1996; 135:201–214. 73. Rusan NM, Fagerstrom CJ, Yvon AM, Wadsworth P. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-α tubulin. Mol Biol Cell. 2001; 12:971–980. 74. Musacchio A, Salmon ED. The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol. 2007; 8:379–393. 75. Agic A, Djalali S, Diedrich K, Hornung D. Apoptosis in endometriosis. Gynecol Obstet Invest. 2009; 68(4):217-23. 76. Renehan AG, Booth C, Potten CS. What is apoptosis, and why is it important? Bmj. 2001; 322:1536–8. 77. King KL, Cidlowski JA. Cell cycle regulation and apoptosis. Annu Rev Physiol. 1998; 60:601–17. 78. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994; 73:2013–26. 79. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239–57. 80. Schmitt CA, Lowe SW. Apoptosis and therapy. J Pathol 1999; 187:127–37. 81. Mayer B. Oberbauer R. Mitochondrial regulation of apoptosis. News Physiol Sci 2003; 18:89–94. 82. Chipuk JE, Green DR. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 2008; 18:157–64. 83. Galonek HL, Hardwick JM. Upgrading the BCL-2 network. Nat Cell Biol 2006; 8:1317–9. 84. Ghibelli L, Diederich M. Multistep and multitask Bax activation. Mitochondrion 2010; 10:604–13. 85. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 2007; 87:99–163. 86. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006; 25:4798–811. 87. Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 2000; 256:58–66. 88. Schweichel JU, Merker HJ. The morphology of various types of cell death in prenatal tissues, Teratology. 1973; 253–266. 89. Leist M, Jaattela M. Four deaths and a funeral: from caspases to alternative mechanisms, Nat. Rev. Mol. Cell Biol. 2001; 589–598. 90. Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis, Int. Rev. Cytol. 1980; 68:251–306. 91. Zong WX, Thompson CB, Necrotic death as a cell fate, Genes Dev. 2006; 20:1– 15. 92. Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome, Proc. Natl. Acad. Sci. U. S. A. 2009; 106:20388–20393. 93. Radogna F, Dicato M, Diederich M. Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochemical Pharmacology. 2015; 94:1–11. 94. Dickens LS, Powley IR, Hughes MA, MacFarlane M. The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 2012; 318:1269–77. 95. Lacour S, Micheau O, Hammann A, Drouineaud V, Tschopp J, Solary E, et al. Chemotherapy enhances TNF-related apoptosis-inducing ligand DISC assembly in HT29 human colon cancer cells. Oncogene 2003; 22:1807–16. 96. Bianchi K, Meier P. A tangled web of ubiquitin chains: breaking news in TNFR1 signaling. Mol Cell 2009; 36:736–42. 97. Reiley WW, Jin W, Lee AJ, Wright A, Wu X, Tewalt EF, et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J Exp Med 2007; 204:1475–85. 98. Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem. 2002; 277:45162–71. 99. Dexter DL, Kowalski HM, Blazar BA, Fligiel Z, Vogel R, Heppner GH. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 1978; 38:3174-3181. 100.Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992; 52:1399-1405. 101.Heppner GH, Miller FR, Shekhar PM. Nontransgenic models of breast cancer. Breast Cancer Res. 2000; 2:331–334. 102.Tao K, Fang M, Alroy J, Sahagian GG. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008; 8:228. 103.https://www.lgcstandards-atcc.org/Products/All/CRL- 2539.aspx#culturemethod.[Erişim Tarihi 25 Ekim 2016]. 104.https://www.lgcstandards-atcc.org/Products/All/CRL-2314.aspx. [Erişim Tarihi 25 Ekim 2016]. 105.Idziorek T, Estaquier J, De Bels F, Ameisen JC. YOPRO-1 permits cytofluorometric analysis of programmed cell death (apoptosis) without interfering with cell viability. J. Immunol. Methods 1995; 185:249–258. 106.Liu X, Van Vleet T, Schnellmann RG. The role of calpain in oncotic cell death. Annu. Rev. Pharmacol. Toxicol. 2004; 44:349–370. 107.Gawlitta D, Oomens CWJ, Baaijens FPT, Bouten CVC. Evaluation of a continuous quantification method of apoptosis and necrosis in tissue cultures. Cytotechnology. 2004; 46:139–150. 108.Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, et al. Assay Guidance Manual, Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences. Created: May 1, 2013; Updated: July 1, 2016; 305-335. 109.Bhalla K, Ibrado AM, Tourkina E, Tang C, Mahohey ME, Huang Y. Taxol induces internucleosomal DNA fragmentation associated with programmed cell death in human myeloid leukemia cells. Leukemia 1993; 7:563-8. 110.Milross CG, Mason KA, Hunter NR, Chung WK, Peters LJ, Milas L. Relationship of mitotic arrest and apoptosis to antitumor effect of paclitaxel. J Natl Cancer Inst 1996; 88:1308–14. 111.Blagosklonny MV, Giannakakou P, el-Deiry WS, Kingston DG, Higgs PI, Neckers L, et al. Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 1997; 57:130–5. 112.Chaudhri RA, Hadadi A, Lobachev KS, Schwartz Z, Boyan BD. Estrogen Receptor-alpha 36 Mediates the Anti-apoptotic Effect of Estradiol in Triple Negative Breast Cancer Cells via a Membrane-Associated Mechanism. Biochim Biophys Acta. 2014; 1843(11):2796–2806. 113.Liebmann JE, Cook JA, Lipschultz C, Teague D, Fisher J, Mitchell JB. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br J Cancer. 1993; 68(6):1104–1109. 114.Yeung TK, Germond C, Chen X, Wang Z. The Mode of Action of Taxol: Apoptosis at Low Concentration and Necrosis at High Concentration. Biochemical and Biophysical Research Communications. 1999; 263:398–404. 115.McCloskey DE, Kaufmann SH, Prestigiacomo LJ, Davidson NE. Paclitaxel induces programmed cell death in MDA-MB-468 human breast cancer cells. Clinical Cancer Research. 1996; 2(5):847-854. 116.Baliga MS, Meleth S, Katiyar SK. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems. Clin Cancer Res. 2005; 11(5):1918-27. 117.Bezivin C, Tomasi S, Rouaud I, Delcros JG, Boustie J. Cytotoxic activity of compounds from the lichen Cladonia convolute. Planta Med. 2004; 70:874–877. 118.Yi X, Lian X, Dong J, Wan Z, Xia C, Song X, et al. Co-delivery of Pirarubicin and Paclitaxel by Human Serum Albumin Nanoparticles to Enhance Antitumor Effect and Reduce Systemic Toxicity in Breast Cancers. Mol. Pharmaceutics. 2015; 12(11):4085–4098. 119.Chen P, Luo S, Wen YJ, Li YH, Li J, Wang YS, et al. Low-dose paclitaxel improves the therapeutic efficacy of recombinant adenovirus encoding CCL21 chemokine against murine cancer. Cancer Sci. 2014; 105:1393–1401. 120.Quispe-Soto ED, Calaf GM. Effect of curcumin and paclitaxel on breast carcinogenesis. International Journal Of Oncology. 2016; 49:2569-2577. 121.Liao PC, Lieu CH. Cell cycle specific induction of apoptosis and necrosis by paclitaxel in the leukemic U937 cells. Life Sciences. 2005; 76:1623–1639. 122.Yuan H, Sun B, Gao F, Lan M. Synergistic anticancer effects of andrographolide and paclitaxel against A549 NSCLC cells. Pharmaceutical Biology. 2016; 54(11):2629–2635 123.Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65(1-2):55-63. 124.Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986; 22;89(2):271-7.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/3050
dc.description.abstractBreast Cancer was the second common cancer worldwide in 2012. Using combination of multiple drugs for treatment has been proven to be more affective by research. Paclitaxel is a chemotherapy medication used to treat a number of types of cancer including breast and uterus cancers. Usnic acid’s antiproliferative and apoptosis inducing effects was shown on many research. In this study primarily the usnic acid on HCC38 human breast cancer and 4T1 mouse cancer cell line was assessed in vitro to show whether it had a cell viability reducing effect. Afterwards the effectiveness of the usage of the usnic acid and paclitaxel together on cell viability has been aimed to evaluate. On HCC38 cells as a result of application of 12.5 μM concentrations of usnic acid 48 hours and 72 hours, cell viability was in order decreased to 83% and 62%. The parameter’s according to the result of the MTT test with HCC38 cells show that the application of paclitaxel with usnic acid has cumulative effect on reducing the cell viability than individual application. As a result of flow cytometry analysis no significant difference was found on the mortality rate on the cell between the application of the combined usage and individual application of paclitaxel. As a result of application of usnic acid on 4T1 cells, cell viability deacreased but the decrease was not statistically significant. As a result of the MTT test with 4T1 cells the application of paclitaxel with usnic acid cell viability was decreased more than the individual application. According to the results of this study application of paclitaxel with usnic acid has a cumulative effect on reducing the cell viability.en
dc.description.tableofcontentsONAY SAYFASI iii YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI iv ETİK BEYAN SAYFASI v TEŞEKKÜR vi ÖZET vii ABSTRACT viii İÇİNDEKİLER ix SİMGELER ve KISALTMALAR xi ŞEKİLLER xiii TABLOLAR xvii 1. GİRİŞ 1 2. GENEL BİLGİLER 3 2.1. Meme Kanseri 3 2.1.1. Epidemiyolojisi 3 2.1.2. Meme Kanserinin Sınıflandırılması 4 2.1.3. Meme Kanserinin Tedavisi 6 2.2. Paklitaksel 7 2.3. Usnik Asit 8 2.4. Kanser Tedavisinde Mikrotübüllerin Rolü 9 2.5. Hücre Ölüm Yolları 10 2.5.1. Apoptozis 10 2.5.2. Nekrozis 12 2.6. Kullanılan Hücrelerin Genel Özellikleri 13 3. GEREÇ VE YÖNTEM 14 3.1. Çalışmada Kullanılan Maddeler 14 3.2. İlaç Formülasyonlarının Hazırlanması 14 3.3. Hazırlanan Çözeltiler ve Solüsyonlar 14 3.4. Deneysel Çalışmalarda Kullanılan Hücre Sayısının Belirlenmesi 14 3.5. Hücre Kültürü İdamesi 15 3.6. Hücre Sayımı 15 3.7. MTT Testi 16 3.8. Akım Sitometri 19 3.9. İstatistiksel Analiz 21 ix 4. BULGULAR 22 4.1. MTT Testi Analizi 22 4.1.1. HCC38 Hücrelerinin MTT Analizi 23 4.1.2. 4T1 Hücrelerinin MTT Analizi 33 4.2. Akım Sitometri Analizi 45 4.2.1. HCC38 Hücreleri Akım Sitometri Analizi 46 4.2.2. 4T1 Hücreleri Akım Sitometri Analizi 51 5. TARTIŞMA 58 5.1. MTT Sonuçları 58 5.1.1. Paklitaksel Uygulaması Sonuçları 58 5.1.2. Usnik Asit Uygulaması Sonuçları 60 5.1.3. Usnik Asit ve Paklitaksel Kombinasyon Sonuçları 61 5.2. Akım Sitometri Sonuçları 62 6. SONUÇ VE ÖNERİLER 65 7. KAYNAKLAR 68 8. ÖZGEÇMİŞ 77tr_TR
dc.language.isoturtr_TR
dc.publisherSağlık Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectPaklitakseltr_TR
dc.subjectUsnik asit
dc.subjectMTT
dc.subjectAkım sitometri
dc.subjectMeme kanseri
dc.titlePaklitaksel/Usnik Asit Kombinasyonunun Meme Kanseri Hücre Hatları Üzerine Etkisitr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetDünya genelinde 2012 yılında meme kanseri sıklığı tüm kanser tipleri arasında ikinci sırada yer almaktadır. Hastalıkla mücadele sürecinde meme kanserinin tedavisinde tek bir ilaç yerine çoklu ilaç kombinasyonlarının kullanımının daha etkili olduğu yapılan bazı çalışmalarla belirlenmiştir. Paklitaksel meme ve uterus kanserlerinin tedavisinde kullanılan en etkin ilaçlardan biridir. Usnik asitin antiproliferatif ve apoptozu indükleyici etkisi yapılan birçok çalışmayla gösterilmiştir. Gerçekleştirdiğimiz bu çalışmanın amacı öncelikle usnik asitin HCC38 insan meme kanseri ve 4T1 fare meme kanseri hücre hatları üzerine hücre canlılığını azaltıcı etki gösterip göstermediği in vitro olarak değerlendirmektir. Sonrasında usnik asitin rutin olarak klinikte kullanılan kemoteröpatik bir ilaç olan paklitaksel ile beraber kullanımının hücre canlılığı üzerine etkinliğinin değerlendirilmesi amaçlanmıştır. HCC38 hücreleri üzerine usnik asitin 12,5 μM konsantrasyonunun 48 saat ve 72 saat uygulaması sonucunda sırasıyla hücre canlılığı %83 ve %62 seviyelerine inmiştir. HCC38 hücreleriyle yaptığımız MTT testi sonuçlarından elde ettiğimiz verilere göre paklitakselle usnik asitin birlikte uygulanması kümülatif bir etki göstererek hücre canlılığını ayrı ayrı uygulamalarına göre daha çok azaltmıştır. Akım sitometri analizi sonucunda ise hücredeki ölüm oranı paklitakselin usnik asitle birlikte uygulanması ile tek başına uygulanması arasında anlamlı bir fark bulunmamıştır. 4T1 hücreleri üzerine ise usnik asit uygulanması sonucunda hücre canlılığında azalma görülsede bu azalma istatistiksel olarak anlamlı bulunmamıştır. 4T1 hücreleriyle yaptığımız MTT testi sonucunda paklitakselin usnik asit ile birlikte uygulanması sonucunda hücre canlılığı ayrı ayrı uygulamaya göre daha çok azalmıştır. Çalışmadan elde edilen tüm sonuçlara göre paklitakselle birlikte usnik asitin uygulanması hücre canlılığını azaltıcı yönde kümülatif etki gösterdiği belirlenmiştir.tr_TR
dc.contributor.departmentFizyolojitr_TR
dc.contributor.authorIDTR113346tr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster