dc.identifier.citation | [1] J. Ma, I. Karaman, and R. D. Noebe, “High temperature shape memory alloys,”
International Materials Reviews, vol. 55, no. 5, pp. 257–315, Sep. 2010.
[2] D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,”
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, vol. 221, no. 4, pp. 535–552, Apr. 2007.
[3] J. M. Jani, M. Leary, and A. Subic, “Shape Memory Alloys in Automotive
Applications,” Applied Mechanics and Materials, vol. 663, pp. 248–253, Oct.
2014.
[4] F. el Feninat, G. Laroche, M. Fiset, and D. Mantovani, “Shape Memory Materials
for Biomedical Applications,” Advanced Engineering Materials, vol. 4, no. 3, pp.
91–104, Mar. 2002.
[5] K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory
alloys,” Progress in Materials Science, vol. 50, no. 5, pp. 511–678, Jul. 2005.
[6] B. Kockar, I. Karaman, J. I. Kim, Y. I. Chumlyakov, J. Sharp, and C.-J. (Mike)
Yu, “Thermomechanical cyclic response of an ultrafine-grained NiTi shape
memory alloy,” Acta Materialia, vol. 56, no. 14, pp. 3630–3646, Aug. 2008.
[7] J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory
alloy research, applications and opportunities,” Materials & Design (1980-2015),
vol. 56, pp. 1078–1113, Apr. 2014.
[8] H. O. Tugrul, H. H. Saygili, M. S. Velipasaoglu, and B. Kockar, “Comparison of
the transformation behavior of cold rolling with aging and hot extrusion with aging
processed Ni 50.3 Ti 29.7 Hf 20 high temperature shape memory alloy,” Smart
Materials and Structures, vol. 28, no. 10, p. 105029, Oct. 2019.
[9] G. S. Firstov, J. van Humbeeck, and Yu. N. Koval, “High Temperature Shape
Memory Alloys Problems and Prospects,” Journal of Intelligent Material Systems
and Structures, vol. 17, no. 12, pp. 1041–1047, Dec. 2006.
[10] M. Ataei, A. Zarei-Hanzaki, and A. Shamsolhodaei, “Shape memory response and
mechanical properties of warm deformed NiTi intermetallic alloy,” Materials
Science and Engineering: A, vol. 680, pp. 291–296, Jan. 2017.
[11] N. Babacan, M. Bilal, C. Hayrettin, J. Liu, O. Benafan, and I. Karaman, “Effects
of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 hightemperature
shape memory alloy,” Acta Materialia, vol. 157, pp. 228–244, Sep.
2018.
[12] M. Prasher, D. Sen, R. Tewari, P. S. R. Krishna, P. D. Babu, and M. Krishnan,
“Effect of Hf solute addition on the phase transformation behavior and hardness of
a Ni-rich NiTi alloy,” Materials Chemistry and Physics, vol. 247, p. 122890, Jun.
2020.
[13] H. H. Saygili, H. O. Tugrul, and B. Kockar, “Effect of Aging Heat Treatment on
the High Cycle Fatigue Life of Ni50.3Ti29.7Hf20 High-Temperature Shape
Memory Alloy,” Shape Memory and Superelasticity, vol. 5, no. 1, pp. 32–41, Mar.
2019.
[14] Velipasaoglu Mustafa Sefa, “The Determination of The Functional Fatigue Life of
High Temperature Shape Memory Alloys After Cold Rolling Process,” Graduate
School of Science and Engineering of Hacettepe University, Ankara, 2020.
[15] K. Otsuka and X. Ren, “Recent developments in the research of shape memory
alloys,” Intermetallics (Barking), vol. 7, no. 5, pp. 511–528, May 1999.
[16] W. Abuzaid and H. Sehitoglu, “Functional fatigue of Ni50.3Ti25Hf24.7 –
Heterogeneities and evolution of local transformation strains,” Materials Science
and Engineering: A, vol. 696, pp. 482–492, Jun. 2017.
[17] D. C. Lagoudas, Shape Memory Alloys, vol. 1. Boston, MA: Springer US, 2008.
[18] D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,”
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, vol. 221, no. 4, pp. 535–552, Apr. 2007.
[19] W. Abuzaid and H. Sehitoglu, “Functional fatigue of Ni50.3Ti25Hf24.7 –
Heterogeneities and evolution of local transformation strains,” Materials Science
and Engineering: A, vol. 696, pp. 482–492, Jun. 2017.
[20] T. B. Massalski, “Solid-state transformations in copper-based alloys,” Metals
Technology, vol. 7, no. 1, pp. 300–304, Jan. 1980.
[21] R. Dasgupta, “A look into Cu-based shape memory alloys: Present scenario and
future prospects,” Journal of Materials Research, vol. 29, no. 16, pp. 1681–1698,
Aug. 2014.
[22] Saygili Hasan Huseyin, “The Development of a fatigue test machine to investigate
the functional fatigue life of high temperature shape memory alloys and the
determination of the functional fatigue life of these alloys,” Graduate School of
Science and Engineering of Hacettepe University, Ankara, 2018.
[23] T. Maruyama and H. Kubo, “Ferrous (Fe-based) shape memory alloys (SMAs):
properties, processing, and applications,” in Shape Memory and Superelastic
Alloys, Elsevier, 2011, pp. 141–159.
[24] H. E. Karaca et al., “Shape memory behavior of high strength NiTiHfPd
polycrystalline alloys,” Acta Materialia, vol. 61, no. 13, pp. 5036–5049, Aug.
2013.
[25] H. Y. Kim, T. Jinguu, T. Nam, and S. Miyazaki, “Cold workability and shape
memory properties of novel Ti–Ni–Hf–Nb high-temperature shape memory
alloys,” Scripta Materialia, vol. 65, no. 9, pp. 846–849, Nov. 2011.
[26] X. L. Meng, W. Cai, Y. D. Fu, J. X. Zhang, and L. C. Zhao, “Martensite structure
in Ti–Ni–Hf–Cu quaternary alloy ribbons containing (Ti,Hf)2Ni precipitates,”
Acta Materialia, vol. 58, no. 10, pp. 3751–3763, Jun. 2010.
[27] X. L. Meng, W. Cai, K. T. Lau, L. C. Zhao, and L. M. Zhou, “Phase transformation
and microstructure of quaternary TiNiHfCu high temperature shape memory
alloys,” Intermetallics (Barking), vol. 13, no. 2, pp. 197–201, Feb. 2005.
[28] H. E. Karaca et al., “Effects of nanoprecipitation on the shape memory and material
properties of an Ni-rich NiTiHf high temperature shape memory alloy,” Acta
Materialia, vol. 61, no. 19, pp. 7422–7431, Nov. 2013.
[29] D. Golberg et al., “Characteristics of Ti50Pd30Ni20 high-temperature shape
memory alloy,” Intermetallics (Barking), vol. 3, no. 1, pp. 35–46, Jan. 1995,
[30] O. Benafan et al., “Shape memory alloy actuator design: CASMART collaborative
best practices and case studies,” International Journal of Mechanics and Materials
in Design, vol. 10, no. 1, pp. 1–42, Mar. 2014.
[31] E. T. F. Chau, C. M. Friend, D. M. Allen, J. Hora, and J. R. Webster, “A technical
and economic appraisal of shape memory alloys for aerospace applications,”
Materials Science and Engineering: A, vol. 438–440, pp. 589–592, Nov. 2006,
[32] L. McDonald Schetky, “Shape memory alloy applications in space systems,”
Materials & Design, vol. 12, no. 1, pp. 29–32, Feb. 1991.
[33] J. van Humbeeck, “Non-medical applications of shape memory alloys,” Materials
Science and Engineering: A, vol. 273–275, pp. 134–148, Dec. 1999.
[34] A. W. Young, R. W. Wheeler, N. A. Ley, O. Benafan, and M. L. Young,
“Microstructural and Thermomechanical Comparison of Ni-Rich and Ni-Lean
NiTi-20 at. % Hf High Temperature Shape Memory Alloy Wires,” Shape Memory
and Superelasticity, vol. 5, no. 4, pp. 397–406, Dec. 2019.
[35] S. Barbarino, E. I. Saavedra Flores, R. M. Ajaj, I. Dayyani, and M. I. Friswell, “A
review on shape memory alloys with applications to morphing aircraft,” Smart
Materials and Structures, vol. 23, no. 6, p. 063001, Jun. 2014.
[36] R. HOLTZ, “Fatigue thresholds of Ni-Ti alloy near the shape memory transition
temperature,” International Journal of Fatigue, vol. 21, pp. 137–145, Sep. 1999,
[37] N. Simiriotis, M. Fragiadakis, J. F. Rouchon, and M. Braza, “Shape control and
design of aeronautical configurations using shape memory alloy actuators,”
Computers & Structures, vol. 244, p. 106434, Feb. 2021.
[38] C. M. Denowh and D. A. Miller, “Thermomechanical training and characterization
of Ni–Ti–Hf and Ni–Ti–Hf–Cu high temperature shape memory alloys,” Smart
Materials and Structures, vol. 21, no. 6, p. 065020, Jun. 2012.
[39] K. C. Atli, I. Karaman, R. D. Noebe, G. Bigelow, and D. Gaydosh, “Work
production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf
high-temperature shape memory alloy,” Smart Materials and Structures, vol. 24,
no. 12, p. 125023, Dec. 2015.
[40] B. Amin-Ahmadi, T. Gallmeyer, J. G. Pauza, T. W. Duerig, R. D. Noebe, and A.
P. Stebner, “Effect of a pre-aging treatment on the mechanical behaviors of
Ni50.3Ti49.7−xHfx (x ≤ 9 at. %) Shape memory alloys,” Scripta Materialia, vol.
147, pp. 11–15, Apr. 2018.
[41] M. I. Khan, H. Y. Kim, Y. Namigata, T. Nam, and S. Miyazaki, “Combined effects
of work hardening and precipitation strengthening on the cyclic stability of
TiNiPdCu-based high-temperature shape memory alloys,” Acta Materialia, vol.
61, no. 13, pp. 4797–4810, Aug. 2013.
[42] H. E. Karaca, E. Acar, H. Tobe, and S. M. Saghaian, “NiTiHf-based shape memory
alloys,” Materials Science and Technology, vol. 30, no. 13, pp. 1530–1544, Nov.
2014.
[43] Y. Wang, “The tensile behavior of Ti36Ni49Hf15 high temperature shape memory
alloy,” Scripta Materialia, vol. 40, no. 12, pp. 1327–1331, May 1999.
[44] S. Besseghini, E. Villa, and A. Tuissi, “NiTiHf shape memory alloy: effect of
aging and thermal cycling,” Materials Science and Engineering: A, vol. 273–275,
pp. 390–394, Dec. 1999.
[45] D. R. Angst, P. E. Thoma, and M. Y. Kao, “The Effect of Hafnium Content on the
Transformation Temperatures of Ni 49 Ti 51-x Hf x. Shape Memory Alloys,” Journal
de Physique IV, vol. 05, no. C8, pp. C8-747-C8-752, Dec. 1995.
[46] P. E. T. M. Y. K. and D. R. A. D. Abu Judom, “High transformation temperature
shape memory alloy,” 1992.
[47] M. Frost, B. Benešová, H. Seiner, M. Kružík, P. Šittner, and P. Sedlák,
“Thermomechanical model for NiTi-based shape memory alloys covering
macroscopic localization of martensitic transformation,” International Journal of
Solids and Structures, vol. 221, pp. 117–129, Jun. 2021.
[48] D. C. Lagoudas, D. A. Miller, L. Rong, and P. K. Kumar, “Thermomechanical
fatigue of shape memory alloys,” Smart Materials and Structures, vol. 18, no. 8,
p. 085021, Aug. 2009.
[49] O. W. Bertacchini, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe,
“Thermomechanical cyclic loading and fatigue life characterization of nickel rich
NiTi shape-memory alloy actuators,” Mar. 2008, p. 692916.
[50] H. Hosoda et al., “Cold rolling of B2 intermetallics,” Journal of Alloys and
Compounds, vol. 302, no. 1–2, pp. 266–273, Apr. 2000.
[51] M. E. Mitwally and M. Farag, “Effect of cold work and annealing on the structure
and characteristics of NiTi alloy,” Materials Science and Engineering: A, vol. 519,
no. 1–2, pp. 155–166, Aug. 2009.
[52] N. A. Ley, R. W. Wheeler, O. Benafan, and M. L. Young, “Characterization of
Thermomechanically Processed High-Temperature Ni-Lean NiTi–20 at. % Hf
Shape Memory Wires,” Shape Memory and Superelasticity, vol. 5, no. 4, pp. 476–
485, Dec. 2019.
[53] O. Karakoc, C. Hayrettin, D. Canadinc, and I. Karaman, “Role of applied stress
level on the actuation fatigue behavior of NiTiHf high temperature shape memory
alloys,” Acta Materialia, vol. 153, pp. 156–168, Jul. 2018.
[54] A. Ahadi, E. Rezaei, and A. Karimi Taheri, “Effect of hot rolling on microstructure
and transformation cycling behaviour of equiatomic NiTi shape memory alloy,”
Materials Science and Technology, vol. 28, no. 6, pp. 727–732, Jun. 2012.
[55] O. Akgul, H. O. Tugrul, and B. Kockar, “Effect of the cooling rate on the thermal
and thermomechanical behavior of NiTiHf high-temperature shape memory
alloy,” Journal of Materials Research, vol. 35, no. 12, pp. 1572–1581, Jun. 2020. | tr_TR |