Basit öğe kaydını göster

dc.contributor.advisorAkal, Fuat
dc.contributor.authorUslu, Nurullah Celal
dc.date.accessioned2022-10-20T07:21:21Z
dc.date.issued2022
dc.date.submitted2022-06-02
dc.identifier.urihttp://hdl.handle.net/11655/26919
dc.description.abstractCapital markets, one of the pillars of the financial system, play a vital role in transferring the excess funds of savers to investors who need funds in the medium and long term. Trust is essential for the safe and effective operation of capital markets and for the healthy transfer of resources from those who supply funds to those who request them. The capital market is constantly regulated and supervised in order to ensure it functions and develops in a reliable, transparent, efficient, stable, fair, and competitive environment and to protect the rights and interests of investors. Manipulation, which prevents the capital market from operating regularly within trust and transparency norms, is an important issue that should be considered both for individual investors who offer funds to the securities markets and for companies that request funds by issuing stocks. This study examines the trade-based manipulations in Borsa Istanbul (BIST). Data on stocks that were manipulated between 2010 and 2015 were used in BIST, and a model consisting of supervised machine learning classification techniques and artificial neural networks was proposed to detect trade-based manipulation from the daily data of manipulated stocks. It has been shown that the proposed model is successful in detecting trade-based manipulations in the stock market based on accuracy, sensitivity, and f1 scores. Experimental results show that an f1 score of 0.86, a sensitivity of 0.87, and an accuracy of 0.89 in market manipulation detection were achieved. With this study, the manipulation in the stock market, the biggest obstacle for investors to make safe investments in the capital markets, will be minimized and the principles of transparency and trust, essential for the formation and development of the capital market, will be established. In addition, due to the success achieved in market manipulation detection, our study will benefit regulators especially in detecting stock market manipulation.tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectTrade-based manipulationtr_TR
dc.subjectMachine learningtr_TR
dc.subjectArtificial neural networkstr_TR
dc.subjectSecurities markettr_TR
dc.subject.lcshT- Teknoloji. Mühendisliktr_TR
dc.titleA Machıne Learnıng Approach For The Detectıon Of Trade Based Manıpulatıons In Borsa İstanbultr_en
dc.title.alternativeMakine Öğrenmesi Yaklaşımıyla Borsa İstanbul’da İşlem Bazlı Manipülasyonların Tespititr_tr
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetFinansal sistemin en temel unsurlarından olan sermaye piyasaları, tasarruf sahiplerinin ellerindeki fazla fonların orta ve uzun vadede fon ihtiyacı olan yatırımcılara aktarılması noktasında çok önemli bir görev yapmaktadır. Sermaye piyasalarının güven içinde ve etkin çalışabilmesinin ve kaynakların fon arz edenlerden fon talep edenlere sağlıklı bir şekilde aktarılabilmesinin en önemli temellerinden birini yatırımcıların piyasaya güveninin tesis edilmiş olması oluşturmaktadır. Sermaye piyasasının güvenilir, şeffaf, etkin, istikrarlı, adil ve rekabetçi bir ortamda işleyişinin ve gelişmesinin sağlanması, yatırımcıların hak ve menfaatlerinin korunması için sermaye piyasası devamlı düzenlenmekte ve denetlenmektedir. Bu düzenleme ve denetleme faaliyetlerinin temel amacı, piyasalarda şeffaflığı sağlamak ve yatırımcıları korumak olup, piyasalarda zaman zaman gözlemlenen kötü niyetli eylemleri önlemeye yöneliktir. Sermaye piyasasının güven ve şeffaflık normları kapsamında düzenli bir şekilde faaliyet göstermesine engel olan faaliyetlerden biri olan manipülasyon, hem menkul kıymet piyasalarına fon sunan bireysel yatırımcılar, hem de hisse senedi ihraç ederek fon talep eden şirketler açısından dikkate alınması gereken önemli bir konudur. Bu çalışma, Borsa İstanbul'da (BİST) gerçekleştirilen işlem bazlı manipülasyonları incelemektedir. BIST’da 2010 - 2015 yılları arasında manipülasyona uğramış hisse senetlerine ilişkin veriler kullanılmış olup, manipüle edilen hisse senetlerinin günlük verilerinden işlem-bazlı manipülasyonu tespit etmek için denetimli makine öğrenmesi sınıflandırma teknikleri ile yapay sinir ağlarından oluşan bir model önerilmişitr. Çalışmanın sonucunda, önerilen modelin doğruluk, duyarlılık ve F1 skor ölçüm yöntemlerine dayalı olarak hisse senetleri piyasasında işleme dayalı manipülasyonları tespit etmede başarılı olduğu gösterilmiştir. Yapılan deneyler sonucunda manipülasyon tespitinde 0,86 F1 skoruna, 0,87 duyarlılığa ve 0,89 doğruluğa ulaşılmıştır. Bu çalışma ile, yatırımcıların sermaye piyasalarında güvenli yatırım yapmalarının önündeki en büyük engel olan borsadaki manipülasyon en aza indirilerek, sermaye piyasasının oluşum ve gelişiminin temeli olan şeffaflık ve güven ilkeleri oluşturulacaktır. Ayrıca, piyasa manipülasyon tespitinin yüksek performansı nedeniyle çalışmamız özellikle borsadaki manipülasyonu tespit etmede düzenleyicilere fayda sağlayacaktır.tr_TR
dc.contributor.departmentBilgisayar Mühendisliğitr_TR
dc.embargo.terms6 aytr_TR
dc.embargo.lift2023-04-24T07:21:21Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster