• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fen Fakültesi
  • Matematik Bölümü
  • Matematik Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Fen Fakültesi
  • Matematik Bölümü
  • Matematik Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Halka Yapısının Sonlu Sıfırlanan Modüller Üzerinde Belirlenmesi

View/Open
Halka Yapısının Sonlu Sıfırlanan Modüller Yardımıyla Belirlenmesi.pdf (19.03Mb)
Date
2021
Author
Çağlar, Deniz Halim
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
This thesis is based on work on modules that satisfy the H-condition, also known as "finitely annihilated modules" in the theory of modules on unitary rings. Modules that satisfy the H-condition have taken an important place in ring theory and attracted attention by many mathematicians because of their emergence and effective use in topics such as Homological Algebra and localization in non-commutative rings. The H-condition, believed to have been proposed by P. Gabriel [8] in the literature, allows a transition between the structure of the ring and the structure of the module on it. The purpose of this thesis is to reveal the structure, examples and importance of finitely annihilated modules, to examine the ring structure consisting of finitely annihilated modules on some module classes. The first chapter of this thesis, which consists of five chapters, consists of information about the historical development and importance of the thesis topic. The second chapter includes the basic definitions and theorems required in the next chapters. In the third chapter, finite annihilated modules are defined and the basic properties they provide are examined. In the fourth chapter, Artinian Rings are characterized by being finite annihilated of each module on it, and the concept of "weak H-condition" is defined. In the last chapter, the effects of semisimple modules, uniform modules, and injective modules to satisfy the H-condition on the ring structure are examined. Keywords: Ring, Module, Finitely Annihilated Module, H-condition, Artinian Ring, Semisimple Module, Uniform Module, Injective Module, Singular module
URI
http://hdl.handle.net/11655/25637
xmlui.mirage2.itemSummaryView.Collections
  • Matematik Bölümü Tez Koleksiyonu [61]

Related items

Showing items related by title, author, creator and subject.

  • Direct Sums And Summands Of Weak Cs-Modules And Continuous Modules 

    Er, N (Rocky Mt Math Consortium, 1999)
  • Rings Whose Cyclic Modules Are Direct Sums Of Extending Modules 

    Aydogdu, Pınar; Er, Noyan; Ertas, Nil Orhan (Cambridge Univ Press, 2012)
    Dedekind domains, Artinian serial rings and right uniserial rings share the following property: Every cyclic right module is a direct sum of uniform modules. We first prove the following improvement of the well-known ...
  • Rings Whose Pure-Injective Right Modules Are Direct Sums of Lifting Modules 

    Guil Asensio, Pedro A.; Tutuncu, Derya Keskin (Academic Press Inc Elsevier Science, 2013)
    It is shown that every pure-injective right module over a ring R is a direct sum of lifting modules if and only if R is a ring of finite representation type and right local type. In particular, we deduce that every left ...
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV