Fast Track Algorithm: How To Differentiate A “Scleroderma Pattern” From A “Non-Scleroderma Pattern”
Göster/ Aç
Tarih
2019Yazar
Smith, Vanessa
Vanhaecke, Amber
Herrick, Ariane L.
Distler, Oliver
Guerra, Miguel G.
Denton, Christopher P.
Deschepper, Ellen
Foeldvari, Ivan
Gutierrez, Marwin
Hachulla, Eric
Ingegnoli, Francesca
Kubo, Satoshi
Mueller-Ladner, Ulf
Riccieri, Valeria
Sulli, Alberto
van Laar, Jaap M.
Vonk, Madelon C.
Walker, Ulrich A.
Cutolo, Maurizio
Marijke, Allain Wouterlood
Pandey, Akshat
Beatrice, Amorosi
Sabrina, Arnold
Diana, Bajo
Alexandra, Balbir
Anastasija, Baric
Fatemah, Baron
Sofia, Barreira
Laura, Barrio Nogal
Joanna, Bartosinska
Anna, Bazela-Zadura
Rikke, Bech
Ana, Begovic
Dalila, Bendjenna
Devis, Benfaremo
Eugenia, Bertoldo
Rens, Besseling
Martin, Bevan
Kenza, Bouayed
Vladimira, Boyadzhieva
Luisa, Brites
Jasper, Broen
Charlotte, Carton
Victor, Cazac
Radia, Chetouane-Bennafaa
Jakub, Chodorowski
Jacopo, Ciaffi
Mariateresa, Cirillo
Andreu-Fernandez, Codina
Bernard, Coleiro
Ines, Condeiro
Campochiaro, Corrado
Francesca, Crisafulli
Nemanja, Damjanov
Yordanova, Damyana
Aleksandra, Danczak-Pazdrowska
Rossella, De Angelis
Meeke, de Kanter
Giacomo, De Luca
Michael, De Moor
Jeska, de Vries-Bouwstra
Francesco, Del Galdo
Anais, Depicker
Blerina, Dhamo
Balebail, Dharmanand
Catarina, Dias
Monika, Dudra-Jastrzebska
Emmanuela, Emperiale Valentina
Nouran, Eshak
Simon, Fage W.
Eleonora, Farina
Isabelle, Ferdinand
Miranda, Fonseca Diogo
Tracy, Frech
Havard, Fretheim
Olga, Gaidarji
Nikolaos, Galanopoulos
Carolina, Gallo
Sara, Ganhao Santos
Onay, Gercik
Gerlienke, Voerman
Karina, Gheorghe
Sami, Giryes
Kasper, Glas
Joao, Gonalves Maria
Roberto Daniel, Gonzalez Benitez
Katarzyna, Gruszecka
Hamida, Guerboukha
Karin, Gunnarsson
Viktoria, Hajdu-Toth Kata
Yanti, Hellmi Rakhma
Issam, Hindi
Tanja, Hinze
Antonia, Hoeger
Lauren, Host
Ariela, Hoxha
Po-Hao, Huang
Claudia, Ickinger
Catherine, Isabelle
Sherif, Ismail
Michal, Jakubaszek
Claudia, Kedor
Brigit, Kersten
Floor, Kerstens
Paula, Keskitalo
Ali, Khan Khalid
Nikita, Khmelinskii
Inge, Klein-Wieringa
Angeliki, Koulouri
Eugene, Kucharz
Susanna, Kyllnen Minna
Maria-Grazia, Lazzaroni
Jacqueline, Lemmers
Maria, Leone
Alain, Lescoat
Hsuan, Li Ying
Carina, Lopes
Ana, Lopez-Ceron
Fabian, Ltscher
Mariana, Luis
Marija, Lukinac Ana
Khue, Ly
Bernadette, Lynch
Rita, Machado Ana
Nathalie, Madeira
Ine, Mahieu
Jakubus, Malgorzata-Michalska
Elena, Martinez Robles
Patricia, Martins
Puneet, Mashru
Daniela, Mazzocchi
Yimy, Medina
Mohsine, Medjadi
Karin, Melsens
Valentina, Messiniti
Bartosz, Miziolek
Alexey, Moiseev
Florentin, Moser
Fanika, Mrsic
Agna, Neto
Tu, Nguyen Thanh Hien
Tandrup, Nielsen Christoffer
Mohamed, Osman
Jaka, Ostrovrsnik
Greta, Pacini
Massimo, Patan
Monica, Pendolino
Katja, Perdan-Pirkmajar
Giorgio, Pettiti
Johannes, Pflugfelder
Michael, Pham
Maude, Phaneuf
Yves, Piette
Cristina, Pomirleanu Daniela
Marco, Pontalti
Stefaan, Poriau
Rita, Prate Ana
Andreea, Predoiu
Paula, Pretel Ruiz
Marta, Priora
Mislav, Radic
Bea, Radovits
Miriam, Raquel
Elisabeth, Rein Siv
Valerie, Reynaert
Gabriela, Rinzis Mirela
Katarzyna, Romanowska-Prochnicka
Vasco, Romao
Laura, Ross
Guido, Rovera
Danilo, Ruiz
Barbara, Russo
Ioana, Rusu
Silvana, Saavedra Gutierrez
Narimene, Saidi
Alper, Sari
Hasar, Satis
Leonard, Schoneveld
Luca, Seitz
Alkemi, Senoh
Anindita, Santosa
Mostafa, Seyed Mardani Seyed
Qutab, Shah
Mariusz, Sikora
Daniela, Silva Filipa
Valeria, Silvestri
Theodora, Simopolou
Rajneet, Singh
Marijn, Smits
Marcus, Snow
Stefano, Soldano
Lilian, Soto
Muhammad, Soyfoo Shahnawaz
Julia, Spierings
Alexia, Steelandt
Wendy, Stevens
Nikolay, Stoilov
Georgiana, Strugariu
Manon, Suitner
Marijana, Supe
Dasa, Suput Skvarca
Wibowo, Suryo Anggoro Kusumo
Baidy, Sy Kane
Anna, Tarasova
Samuele, Tardito
Yonit, Tavor
Catarina, Tenazinha
Anna, Thoma
Michael, Tjeuw
Amelia, Trombetta
Ana, Valido
Frank, van den Hoogen
Noortje, Van Herwaarden
Aniek, Van Meerendonck
Erwin, Van Spil
Michael, Vanden Bulcke
Elisa, Verduci
Lucas, Verniers
Nancy, Vivar
Karen, Voigt
Ine, Vos
Kristin, Wiefel
Anna, Wojteczek
Ritsuko, Yokochi
Guiseppe, Zampogna
R, EULAR Study Grp Microcirculation
Üst veri
Tüm öğe kaydını gösterÖzet
Objectives: This study was designed to propose a simple “Fast Track algorithm” for capillaroscopists of any level of experience to differentiate “scleroderma patterns” from “non-scleroderma patterns” on capillaroscopy and to assess its inter-rater reliability. Methods: Based on existing definitions to categorise capillaroscopic images as “scleroderma patterns” and taking into account the real life variability of capillaroscopic images described standardly according to the European League Against Rheumatism (EULAR) Study Group on Microcirculation in Rheumatic Diseases, a fast track decision tree, the “Fast Track algorithm” was created by the principal expert (VS) to facilitate swift categorisation of an image as “non-scleroderma pattern (category 1)” or “scleroderma pattern (category 2)”. Mean inter-rater reliability between all raters (experts/attendees) of the 8th EULAR course on capillaroscopy in Rheumatic Diseases (Genoa, 2018) and, as external validation, of the 8th European Scleroderma Trials and Research group (EUSTAR) course on systemic sclerosis (SSc) (Nijmegen, 2019) versus the principal expert, as well as reliability between the rater pairs themselves was assessed by mean Cohen's and Light's kappa coefficients. Results: Mean Cohen's kappa was 1/0.96 (95% CI 0.95-0.98) for the 6 experts/135 attendees of the 8th EULAR capillaroscopy course and 1/0.94 (95% CI 0.92-0.96) for the 3 experts/85 attendees of the 8th EUSTAR SSc course. Light's kappa was 1/0.92 at the 8th EULAR capillaroscopy course, and 1/0.87 at the 8th EUSTAR SSc course. C Conclusion: For the first time, a clinical expert based fast track decision algorithm has been developed to differentiate a “non-scleroderma” from a “scleroderma pattern” on capillaroscopic images, demonstrating excellent reliability when applied by capillaroscopists with varying levels of expertise versus the principal expert and corroborated with external validation.