• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Fen Fakültesi
  • Matematik Bölümü
  • Matematik Bölümü Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Fen Fakültesi
  • Matematik Bölümü
  • Matematik Bölümü Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometric Structures on Riemann Surfaces and Reidemeister Torsion

View/Open
HaticeZeybek-DoktoraTeziyeni.pdf (661.4Kb)
Date
2020
Author
Zeybek, Hatice
xmlui.dri2xhtml.METS-1.0.item-emb
Acik erisim
xmlui.mirage2.itemSummaryView.MetaData
Show full item record
Abstract
Let Σ be a closed orientable surface of genus at least 2 and Rep(Σ,G) be the smooth part of the representation variety of homomorphisms' conjugation classes from fundamental group of Σ to Lie group G. In this thesis, the Reidemeister torsion formulas of the representations corresponding to geometric structures in two different categories, real and complex, are clearly stated that they can be calculated through the related symplectic forms. This thesis consists of two main parts: In the first part, real projective structures are discussed. The deformation space B(Σ) of convex real projective structures on the surface has the Goldman coordinates in the literature and this space also contains the Teichmüller space. Using these coordinates, H.C. Kim clearly expressed the Atiyah-Bott-Goldman symplectic form ω_PSL(3,R) on the representation space Rep(PSL(3,R)). In this part, in the light of all this information, the formula that calculates the Reidemeister torsion of representations Rep(PSL(3,R)) is obtained through the symplectic form ω_PSL(3,R). In the second part, complex projective structures are considered. There is a natural holomorphic projection from CP(Σ) the space of isotopy classes of complex projective structures on the surface to the Teichmüller space. Any smooth section s of this projection yields a diffeomorhism between CP(Σ) and the cotangent bundle space T^*Teich(Σ) . There is the symplectic form ω_PSL(2,C) on CP(Σ) which is open in Rep(PSL(2,C)) and the symplectic form ω_nat on T^*Teich(Σ) . In this part, the Reidemeister torsion of the representations in CP(Σ) are expressed by ω_nat and ω_PSL(2,C) symplectic forms thanks to considered s section is Bers, Schottky, Earle and Fuchsian section, respectively. In addition, the results are applied to 3-manifolds that its boundary consisting of closed surfaces with genus at least 2.
URI
http://hdl.handle.net/11655/22685
xmlui.mirage2.itemSummaryView.Collections
  • Matematik Bölümü Tez Koleksiyonu [61]
xmlui.dri2xhtml.METS-1.0.item-citation
H. Zeybek, Geometric Structures on Riemann Surfaces and Reidemeister Torsion, PhD thesis, Hacettepe University 2020.
Hacettepe Üniversitesi Kütüphaneleri
Açık Erişim Birimi
Beytepe Kütüphanesi | Tel: (90 - 312) 297 6585-117 || Sağlık Bilimleri Kütüphanesi | Tel: (90 - 312) 305 1067
Bizi Takip Edebilirsiniz: Facebook | Twitter | Youtube | Instagram
Web sayfası:www.library.hacettepe.edu.tr | E-posta:openaccess@hacettepe.edu.tr
Sayfanın çıktısını almak için lütfen tıklayınız.
Contact Us | Send Feedback



DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV
 

 


DSpace@Hacettepe
huk openaire onayı
by OpenAIRE

About HUAES
Open Access PolicyGuidesSubcriptionsContact

livechat

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherLanguageRightsxmlui.ArtifactBrowser.Navigation.browse_indexFundingxmlui.ArtifactBrowser.Navigation.browse_subtype

My Account

LoginRegister

Statistics

View Usage Statistics

DSpace software copyright © 2002-2016  DuraSpace
Theme by 
Atmire NV