Basit öğe kaydını göster

dc.contributor.advisorBoyacı, İsmail Hakkı
dc.contributor.authorÖzer Geniş, Duygu
dc.date.accessioned2020-09-17T10:00:51Z
dc.date.issued2020
dc.date.submitted2020-07-23
dc.identifier.citation[1] E.O. Wilson, Biophilia, Reprint ed., Harvard University Press, USA, 1984. [2] H.K. Mayer, Milk species identification in cheese varieties using electrophoretic, chromatographic and PCR techniques, Int Dairy J, 15 (2005) 595-604. [3] J. Spink, D.C. Moyer, Defining the Public Health Threat of Food Fraud, J Food Sci, 76 (2011) R157-R163. [4] ISO, Security and resilience – Authenticity, integrity and trust for products and documents – General principles for product fraud risk and countermeasures, ISO 22380:2018, 2018, [5] A. Poonia, A. Jha, R. Sharma, H.B. Singh, A.K. Rai, N. Sharma, Detection of adulteration in milk: A review, International Journal of Dairy Technology, 70 (2017) 23-42. [6] J. Spink, P.V. Hegarty, N.D. Fortin, C.T. Elliott, D.C. Moyer, The application of public policy theory to the emerging food fraud risk: Next steps, Trends Food Sci Tech, 85 (2019) 116-128. [7] GFSI, Tackling Food Fraud through Food Safety Management Systems, https://mygfsi.com/wp-content/uploads/2019/09/Food-Fraud-GFSI-Technical- Document.pdf, Erişim tarihi: 11 Mayıs 2020, [8] J.T. Cunha, T.I. Ribeiro, J.B. Rocha, J. Nunes, J.A. Teixeira, L. Domingues, RAPD and SCAR markers as potential tools for detection of milk origin in dairy products: Adulterant sheep breeds in Serra da Estrela cheese production, Food Chem, 211 (2016) 631-636. [9] N. Nicolaou, Y. Xu, R. Goodacre, Fourier transform infrared spectroscopy and multivariate analysis for the detection and quantification of different milk species, Journal of Dairy Science, 93 (2010) 5651-5660. [10] H. Besler, S. Ünal, Ankara’da Satılan Sokak Sütlerinin Bazı Vitaminler Açısından değerlendirilmesi ve Ev Koşullarında Uygulanan Kaynatmanın Süreye Bağlı Olarak Vitaminlere Olan Etkisi, IV Uluslararası Beslenme ve Diyetetik Kongresi, Ankara, 2006, pp. 216. 82 [11] TSE, Hayvansal Gıdalar için Özel Hijyen Kuralları Yönetmeliği, Sayı: 28155, Türk Standartları Enstitüsü, 2011, Resmi Gazete: Ankara [12] E.F. Renny, D.K. Daniel, A.I. Krastanov, C.A. Zachariah, R. Elizabeth, Enzyme Based Sensor for Detection of Urea in Milk, Biotechnology & Biotechnological Equipment, 19 (2005) 198-201. [13] A.M. Caroli, S. Chessa, G.J. Erhardt, Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition, Journal of Dairy Science, 92 (2009) 5335-5352. [14] W.L. Claeys, C. Verraes, S. Cardoen, J. De Block, A. Huyghebaert, K. Raes, K. Dewettinck, L. Herman, Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits, Food Control, 42 (2014) 188-201. [15] P. Kalac, E. Samkova, The effects of feeding various forages on fatty acid composition of bovine milk fat: A review, Czech J Anim Sci, 55 (2010) 521- 537. [16] P.F. Fox, Milk Proteins: General and Historical Aspects, in: P.F. Fox, P.L.H. McSweeney (Eds.) Advanced Dairy Chemistry—1 Proteins: Part A / Part B, Springer US, Boston, MA, 2003, pp. 1-48. [17] R.E. Black, S.M. Williams, I.E. Jones, A. Goulding, Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health, Am J Clin Nutr, 76 (2002) 675-680. [18] IDF, Turkey Dairy Sector, https://idfwds2019.com/en/turkey-dairy-sector, Erişim tarihi: 11 Mayıs 2020, [19] FAO, Dairy Market Review- Overview of global dairy market developments in 2018 Food and Agriculture Organization of the United Nations, 2018, [20] Ulusal Süt Konseyi, 2018 Yılı 12 Aylık Süt ve Süt Ürünleri Üretimi, TUİK, 2018, [21] Ulusal Süt Konseyi, Dünya ve Türkiye’de Süt Sektör İstatistikleri- 2018 Süt Raporu, 2018, [22] M. Kamthania, J. Saxena, K. Saxena, D.K. Sharma, Milk Adultration: Methods of Detection &Remedial Measures, National Conference on Synergetic Trends in engineering and Technology (STET-2014), International Journal of Engineering and Technical Research, 2014, pp. 15-20. 83 [23] M. Obladen, From Swill Milk to Certified Milk: Progress in Cow's Milk Quality in the 19th Century, Ann Nutr Metab, 64 (2014) 80-87. [24] B. Wilson, The Swill Is Gone, the New York Times, 2008, US [25] D.I. Ellis, V.L. Brewster, W.B. Dunn, J.W. Allwood, A.P. Golovanov, R. Goodacre, Fingerprinting food: current technologies for the detection of food adulteration and contamination, Chem Soc Rev, 41 (2012) 5706-5727. [26] P. Singh, N. Gandhi, Milk Preservatives and Adulterants: Processing, Regulatory and Safety Issues, Food Rev Int, 31 (2015) 236-261. [27] S.D. Kandpal, A.K. Srivastava, K.S. Negi, Estimation of quality of raw milk (open & branded) by milk adulteration testing kit, Indian Journal of Community Health, 24 (2012) 188-192. [28] Y.J. Ma, W.B. Dong, C. Fan, E.D. Wang, Identification of cow milk in goat milk by nonlinear chemical fingerprint technique, J Food Drug Anal, 25 (2017) 751- 758. [29] F. Mabood, F. Jabeen, J. Hussain, A. Al-Harrasi, A. Hamaed, S.A.A. Al Mashaykhi, Z.M.A. Al Rubaiey, S. Manzoor, A. Khan, Q.M.I. Haq, S.A. Gilani, A. Khan, FT-NIRS coupled with chemometric methods as a rapid alternative tool for the detection & quantification of cow milk adulteration in camel milk samples, Vibrational Spectroscopy, 92 (2017) 245-250. [30] N.P. Rodrigues, P.E. Givisiez, R.C. Queiroga, P.S. Azevedo, W.A. Gebreyes, C.J. Oliveira, Milk adulteration: Detection of bovine milk in bulk goat milk produced by smallholders in northeastern Brazil by a duplex PCR assay, J Dairy Sci, 95 (2012) 2749-2752. [31] F. Trimboli, N. Costanzo, V. Lopreiato, C. Ceniti, V.M. Morittu, A. Spina, D. Britti, Detection of buffalo milk adulteration with cow milk by capillary electrophoresis analysis, J Dairy Sci, 102 (2019) 5962-5970. [32] A.H. Ohlsson, J.A. Fauerbach, E. Cortón, Electrochemical method for detection of bovine milk adulteration with urea and melamine, 7th Ibero-American Congress on Sensors,Portugal, 2010. [33] B. Caballero, L. Allen, A. Prentice, Encyclopedia of human nutrition, Elsevier/Academic Press2005. [34] K. Burgess, Milk and Dairy Products in Human Nutrition (2013), by E. Muehlhoff, A. Bennett and D. McMahon, Food and Agriculture Organisation of the United Nations (FAO), Rome. E-ISBN: 978-92-5-107864-8 (PDF). 84 Available on web-site (publications-sales@fao.org), International Journal of Dairy Technology, 67 (2014) 303-304. [35] C. Hoppe, C. Mølgaard, K.F. Michaelsen, Cow's Milk and Linear Growth in Industrialized and Developing Countries, Annual Review of Nutrition, 26 (2006) 131-173. [36] G.D. Miller, J.K. Jarvis, L.D. McBean, Handbook of Dairy Foods and Nutrition, CRC Press2006. [37] B. Walther, A. Schmid, R. Sieber, K. Wehrmuller, Cheese in nutrition and health, Dairy Science and Technology, 88 (2008). [38] S.L. Gorbach, Probiotics and gastrointestinal health, Am J Gastroenterol, 95 (2000) S2-4. [39] G.C. Major, J.P. Chaput, M. Ledoux, S. St-Pierre, G.H. Anderson, M.B. Zemel, A. Tremblay, Recent developments in calcium-related obesity research, Obes Rev, 9 (2008) 428-445. [40] L.D. McCabe, B.R. Martin, G.P. McCabe, C.C. Johnston, C.M. Weaver, M. Peacock, Dairy intakes affect bone density in the elderly, Am J Clin Nutr, 80 (2004) 1066-1074. [41] M.B. Zemel, Role of calcium and dairy products in energy partitioning and weight management, Am J Clin Nutr, 79 (2004) 907S-912S. [42] TSE, Türk Gıda Kodeksi Fermente Süt Ürünleri Tebliği, Tebliğ No: 2009/25, Sayı: 27143, Türk Standartları Enstitüsü, 2009, Resmi Gazete: Ankara [43] TSE, Türk Gıda Kodeksi Peynir Tebliği, Tebliğ No: 2015/6, Sayı: 29261, Türk Standartları Enstitüsü, 2015, Resmi Gazete: Ankara [44] S.C. Murphy, N.H. Martin, D.M. Barbano, M. Wiedmann, Influence of raw milk quality on processed dairy products: How do raw milk quality test results relate to product quality and yield?, Journal of Dairy Science, 99 (2016) 10128-10149. [45] C.-L. Zhang, M.R. Fowler, N.W. Scott, G. Lawson, A. Slater, A TaqMan real- time PCR system for the identification and quantification of bovine DNA in meats, milks and cheeses, Food Control, 18 (2007) 1149-1158. [46] A.J. van Hengel, Food allergen detection methods and the challenge to protect food-allergic consumers, Anal Bioanal Chem, 389 (2007) 111-118. [47] S. Darwish, A. Allam, A. Amin, Evaluation of PCR Assay for Detection of Cow's Milk in Water Buffalo's Milk, World Applied Sciences Journal., 7 (2009). 85 [48] E. Molina, P. Jesús Martı́n-Álvarez, M. Ramos, Analysis of cows', ewes’ and goats’ milk mixtures by capillary electrophoresis: quantification by multivariate regression analysis, Int Dairy J, 9 (1999) 99-105. [49] A. Plath, I. Krause, R. Einspanier, Species identification in dairy products by three different DNA-based techniques, Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 205 (1997) 437-441. [50] G. Enne, D. Elez, F. Fondrini, I. Bonizzi, M. Feligini, R. Aleandri, High- performance liquid chromatography of governing liquid to detect illegal bovine milk's addition in water buffalo Mozzarella: Comparison with results from raw milk and cheese matrix, Journal of Chromatography A, 1094 (2005) 169-174. [51] S. MacMahon, T.H. Begley, G.W. Diachenko, S.A. Stromgren, A liquid chromatography–tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods, Journal of Chromatography A, 1220 (2012) 101-107. [52] N. Rodríguez, M.C. Ortiz, L. Sarabia, E. Gredilla, Analysis of protein chromatographic profiles joint to partial least squares to detect adulterations in milk mixtures and cheeses, Talanta, 81 (2010) 255-264. [53] S. Durakli Velioglu, E. Ercioglu, I.H. Boyaci, Rapid discrimination between buffalo and cow milk and detection of adulteration of buffalo milk with cow milk using synchronous fluorescence spectroscopy in combination with multivariate methods, Journal of Dairy Research, 84 (2017) 214-219. [54] M.C. Soto-Barajas, M.I. Gonzalez-Martin, J. Salvador-Esteban, J.M. Hernandez-Hierro, V. Moreno-Rodilla, A.M. Vivar-Quintana, I. Revilla, I.L. Ortega, R. Moron-Sancho, B. Curto-Diego, Prediction of the type of milk and degree of ripening in cheeses by means of artificial neural networks with data concerning fatty acids and near infrared spectroscopy, Talanta, 116 (2013) 50- 55. [55] R. Ullah, S. Khan, H. Ali, M. Bilal, M. Saleem, A. Mahmood, M. Ahmed, Raman-spectroscopy-based differentiation between cow and buffalo milk, Journal of Raman Spectroscopy, 48 (2017) 692-696. [56] L.A. Dias, A.M. Peres, A.C.A. Veloso, F.S. Reis, M. Vilas-Boas, A.A.S.C. Machado, An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk, Sensors and Actuators B: Chemical, 136 (2009) 209-217. 86 [57] I.P. Hurley, H. Elyse Ireland, R.C. Coleman, J.H.H. Williams, Application of immunological methods for the detection of species adulteration in dairy products, International Journal of Food Science & Technology, 39 (2004) 873- 878. [58] R. Choopan, P. Thanakiatkrai, T. Kitpipit, Simultaneous species identification in milk and dairy products using direct pcr, Forensic Science International: Genetics Supplement Series, 6 (2017) e214-e215. [59] N. Costa, F. Ravasco, R. Miranda, M. Duthoit, L.B. Roseiro, Evaluation of a commercial ELISA method for the quantitative detection of goat and cow milk in ewe milk and cheese, Small Ruminant Research, 79 (2008) 73-79. [60] EC, Commission Regulation (EC) No: 213/2001, L037, pp. 51-60, Official Journal of the European Communities, 2001, [61] Y. Yang, N. Zheng, J. Yang, D. Bu, J. Wang, L. Ma, P. Sun, Animal species milk identification by comparison of two-dimensional gel map profile and mass spectrometry approach, Int Dairy J, 35 (2014) 15-20. [62] R. Branciari, I.J. Nijman, M.E. Plas, E. Di Antonio, J.A. Lenstra, Species origin of milk in Italian mozzarella and Greek feta cheese, J Food Prot, 63 (2000) 408- 411. [63] I. Giovannacci, C. Guizard, M. Carlier, V. Duval, J.-L. Martin, C. Demeulemester, Species identification of meat products by ELISA, International Journal of Food Science & Technology, 39 (2004) 863-867. [64] Z. Wang, T. Li, W. Yu, L. Qiao, S. Yang, A. Chen, A low-cost novel lateral flow nucleic acid assay (LFNAA) for yak milk authentication, LWT, 122 (2020) 109038. [65] D.P. Kalogianni, DNA-based analytical methods for milk authentication, European Food Research and Technology, 244 (2018) 775-793. [66] M. Di Domenico, M. Di Giuseppe, J.D. Wicochea Rodríguez, C. Cammà, Validation of a fast real-time PCR method to detect fraud and mislabeling in milk and dairy products, Journal of Dairy Science, 100 (2017) 106-112. [67] I.P. Hurley, R.C. Coleman, H.E. Ireland, J.H.H. Williams, Use of sandwich IgG ELISA for the detection and quantification of adulteration of milk and soft cheese, Int Dairy J, 16 (2006) 805-812. [68] C. Romero, O. Perez-Andújar, A. Olmedo, S. Jiménez, Detection of cow's milk in ewe's or goat's milk by HPLC, Chromatographia, 42 (1996) 181-184. 87 [69] R.-K. Chen, L.-W. Chang, Y.-Y. Chung, M.-H. Lee, Y.-C. Ling, Quantification of cow milk adulteration in goat milk using high-performance liquid chromatography with electrospray ionization mass spectrometry, Rapid Communications in Mass Spectrometry, 18 (2004) 1167-1171. [70] L. Wang, X. Li, L. Liu, H. da Zhang, Y. Zhang, Y. Hao Chang, Q.P. Zhu, Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC- Q-TOF-MS, Food Chemistry, 310 (2020) 125865. [71] R. Karoui, J. De Baerdemaeker, A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products, Food Chemistry, 102 (2007) 621-640. [72] B. Sezer, S. Durna, G. Bilge, A. Berkkan, A. Yetisemiyen, I.H. Boyaci, Identification of milk fraud using laser-induced breakdown spectroscopy (LIBS), Int Dairy J, 81 (2018) 1-7. [73] R. Ullah, S. Khan, H. Ali, M. Bilal, Potentiality of using front face fluorescence spectroscopy for quantitative analysis of cow milk adulteration in buffalo milk, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 225 (2020) 117518. [74] R. Ullah, S. Khan, H. Ali, M. Bilal, M. Saleem, Identification of cow and buffalo milk based on Beta carotene and vitamin-A concentration using fluorescence spectroscopy, PLoS One, 12 (2017) e0178055. [75] B. Valeur, M.N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, Wiley2012. [76] F.A. Settle, Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall PTR1997. [77] A.T.R. Williams, An Introduction to Fluorescence Spectroscopy, Perkin- Elmer1981. [78] J.N. Miller, Recent developments in fluorescence and chemiluminescence analysis. Plenary lecture, Analyst, 109 (1984) 191-198. [79] A. Dankowska, M. Małecka, W. Kowalewski, Application of synchronous fluorescence spectroscopy with multivariate data analysis for determination of butter adulteration, International Journal of Food Science & Technology, 49 (2014) 2628-2634. [80] Y.-Q. Li, X.-Y. Li, A.A.F. Shindi, Z.-X. Zou, Q. Liu, L.-R. Lin, N. Li, Synchronous Fluorescence Spectroscopy and Its Applications in Clinical 88 Analysis and Food Safety Evaluation, in: C.D. Geddes (Ed.) Reviews in Fluorescence 2010, Springer New York, New York, NY, 2012, pp. 95-117. [81] S.N. Karuk Elmas, F.N. Arslan, G. Akin, A. Kenar, H.G. Janssen, I. Yilmaz, Synchronous fluorescence spectroscopy combined with chemometrics for rapid assessment of cold-pressed grape seed oil adulteration: Qualitative and quantitative study, Talanta, 196 (2019) 22-31. [82] G. Steiner, Matthias Otto: Chemometrics: statistics and computer application in analytical chemistry, 3rd ed, Analytical and Bioanalytical Chemistry, 409 (2017) 5615-5616. [83] J. Reedijk, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier2013. [84] CamoAnalytics, Chemometrics- Understand chemical data., https://www.camo.com/chemometrics/, Erişim tarihi: 13 Mayıs 2020, [85] J. Workman, 28 - Review of Chemometrics Applied to Spectroscopy: Quantitative and Qualitative Analysis, in: J. Workman (Ed.) The Handbook of Organic Compounds, Academic Press, Burlington, 2001, pp. 301-326. [86] J.A. Lopes, P.F. Costa, T.P. Alves, J.C. Menezes, Chemometrics in bioprocess engineering: process analytical technology (PAT) applications, Chemometrics and Intelligent Laboratory Systems, 74 (2004) 269-275. [87] D. Ronen, C.F.W. Sanders, H.S. Tan, P.R. Mort, F.J. Doyle, Predictive Dynamic Modeling of Key Process Variables in Granulation Processes Using Partial Least Squares Approach, Industrial & Engineering Chemistry Research, 50 (2011) 1419-1426. [88] M. Otto, Chemometrics: Statistics and Computer Application in Analytical Chemistry, Wiley2016. [89] R.E. Shaffer, Multi- and Megavariate Data Analysis. Principles and Applications, I. Eriksson, E. Johansson, N. Kettaneh-Wold and S. Wold, Umetrics Academy, Umeå, 2001, ISBN 91-973730-1-X, 533pp, Journal of Chemometrics, 16 (2002) 261-262. [90] L.C. Lee, C.Y. Liong, A.A. Jemain, Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps, Analyst, 143 (2018) 3526-3539. 89 [91] R.G. Brereton, G.R. Lloyd, Partial least squares discriminant analysis: taking the magic away, Journal of Chemometrics, 28 (2014) 213-225. [92] C.d.S. Gondim, R.G. Junqueira, S.V.C.d. Souza, Trends in implementing the validation of qualitative methods of analysis, Revista do Instituto Adolfo Lutz (Impresso), 70 (2011) 433-447. [93] A. Gholizadeh, L. Boruvka, M. Saberioon, R. Vasat, Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues, Appl Spectrosc, 67 (2013) 1349-1362. [94] A. Dankowska, M. Malecka, W. Kowalewski, Detection of plant oil addition to cheese by synchronous fluorescence spectroscopy, Dairy Sci Technol, 95 (2015) 413-424. [95] I. Sergiel, P. Pohl, M. Biesaga, A. Mironczyk, Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles, Food Chemistry, 145 (2014) 319-326. [96] A.A. Kulmyrzaev, D. Levieux, E. Dufour, Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins, J Agric Food Chem, 53 (2005) 502-507. [97] F.N. Arslan, G. Akin, Ş.N. Karuk Elmas, I. Yilmaz, H.-G. Janssen, A. Kenar, Rapid detection of authenticity and adulteration of cold pressed black cumin seed oil: A comparative study of ATR–FTIR spectroscopy and synchronous fluorescence with multivariate data analysis, Food Control, 98 (2019) 323-332. [98] A. Sahar, U.u. Rahman, A. Kondjoyan, S. Portanguen, E. Dufour, Monitoring of thermal changes in meat by synchronous fluorescence spectroscopy, Journal of Food Engineering, 168 (2016) 160-165. [99] J. Tan, R. Li, Z.T. Jiang, S.H. Tang, Y. Wang, M. Shi, Y.Q. Xiao, B. Jia, T.X. Lu, H. Wang, Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil, Food Chem, 217 (2017) 274-280. [100] H.T. Temiz, U. Tamer, A. Berkkan, I.H. Boyaci, Synchronous fluorescence spectroscopy for determination of tahini adulteration, Talanta, 167 (2017) 557- 562. 90 [101] F. Mabood, F. Jabeen, M. Ahmed, J. Hussain, S.A.A. Al Mashaykhi, Z.M.A. Al Rubaiey, S. Farooq, R. Boque, L. Ali, Z. Hussain, A. Al-Harrasi, A.L. Khan, Z. Naureen, M. Idrees, S. Manzoor, Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk, Food Chem, 221 (2017) 746-750. [102] D.A. Burns, E.W. Ciurczak, Handbook of Near-Infrared Analysis, CRC Press2007. [103] D. Rohleder, W. Kiefer, W. Petrich, Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy, Analyst, 129 (2004) 906-911. [104] B.G. Botelho, N. Reis, L.S. Oliveira, M.M. Sena, Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA, Food Chem, 181 (2015) 31-37. [105] M.A. Gondal, Z.S. Seddigi, M.M. Nasr, B. Gondal, Spectroscopic detection of health hazardous contaminants in lipstick using Laser Induced Breakdown Spectroscopy, Journal of Hazardous Materials, 175 (2010) 726-732. [106] B. Magnusson, The fitness for purpose of analytical methods : A laboratory guide to method validation and related topics (2nd ed. 2014), Eurachem2014. [107] N. Yang, Elemental Analysis of Soils Using Laser-Induced Breakdown Spectroscopy (LIBS), 2009. [108] S.K. Garimella Purna, L.A. Prow, L.E. Metzger, Utilization of Front-Face Fluorescence Spectroscopy for Analysis of Process Cheese Functionality, Journal of Dairy Science, 88 (2005) 470-477. [109] P.O. Skjervold, R.G. Taylor, J.P. Wold, P. Berge, S. Abouelkaram, J. Culioli, É. Dufour, Development of Intrinsic Fluorescent Multispectral Imagery Specific for Fat, Connective Tissue, and Myofibers in Meat, J Food Sci, 68 (2003) 1161- 1168. [110] D. Tome, J. Schwarz, N. Darcel, G. Fromentin, Protein, amino acids, vagus nerve signaling, and the brain, Am J Clin Nutr, 90 (2009) 838S-843S. [111] R. Karoui, B. Martin, É. Dufour, Potentiality of front-face fluorescence spectroscopy to determine the geographic origin of milks from the Haute-Loire department (France), Lait, 85 (2005) 223-236. 91 [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] J. Christensen, E.M. Becker, C.S. Frederiksen, Fluorescence spectroscopy and PARAFAC in the analysis of yogurt, Chemometrics and Intelligent Laboratory Systems, 75 (2005) 201-208. M.P . Ntakatsane, X.M. Liu, P . Zhou, Short communication: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy, Journal of Dairy Science, 96 (2013) 2130-2136. G. Moatsou, A. Hatzinaki, G. Psathas, E. Anifantakis, Detection of caprine casein in ovine Halloumi cheese, Int Dairy J, 14 (2004) 219-226. C.C. Fagan, T.G. Ferreira, F.A. Payne, C.P. O'Donnell, C.P. O'Donnell, D.J. O'Callaghan, M. Castillo, Preliminary evaluation of endogenous milk fluorophores as tracer molecules for curd syneresis, Journal of dairy science, 94 (2011) 5350-5358. G. Mazerolles, M.-F. Devaux, G. Duboz, M.H. Duployer, N.M. Riou, É. Dufour, Infrared and fluorescence spectroscopy for monitoring protein structure and interaction changes during cheese ripening, Dairy Science & Technology, 81 (2001) 509-527. R. Karoui, A. Mouazen, É. Dufour, R. Schoonheydt, J. De Baerdemaeker, Utilisation of front-face fluorescence spectroscopy for the determination of some selected chemical parameters in soft cheeses, http://dx.doi.org/10.1051/lait:2005047, 86 (2006). C.M. Andersen, G. Mortensen, Fluorescence Spectroscopy: A Rapid Tool for Analyzing Dairy Products, Journal of Agricultural and Food Chemistry, 56 (2008) 720-729. IDFA, Importance of Milk in Diet, 2020, V. Gantner, P. Mijic, M. Baban, Z. Škrtić, A. Turalija, The overall and fat composition of milk of various species, Mljekarstvo / Dairy, 65 (2015) 223-231. G. Bylund, Dairy Processing Handbook, Tetra Pak Processing Systems AB2003. Changes During Heat Treatment of Milk, High Temperature Processing of Milk and Milk Products, pp. 177-260. M.P . Brandao, M.G. Neto, V .d.C. dos Anjos, M.J.V . Bell, Evaluation of the effects of mild heat in bovine milk by time resolved fluorescence, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 219 (2019) 457-462. 92 [124] [125] [126] J. Liu, A. Zamora, M. Castillo, J. Saldo, Using front-face fluorescence spectroscopy for prediction of retinol loss in milk during thermal processing, LWT, 87 (2018) 151-157. Y.B. Ma, J.K. Amamcharla, Front-face fluorescence spectroscopy combined with chemometrics to detect high proteinaceous matter in milk and whey ultrafiltration permeate, Journal of Dairy Science, 102 (2019) 8756-8767. M. Yüksel, A. kavaz yüksel, H. Ürüşan, Peynir Altı Suyunun Çeşitli Özellikleri Ve Kullanım Olanakları, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 22 (2019) 114-125.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/22676
dc.description.abstractIn the dairy industry, the mixing of high-priced milk types such as sheep, goats, and buffalo with low-priced milk types such as cow milk, and therefore the inability to determine the purity of milk types and the fact that true labeling cannot be done correctly have become a common problem worldwide. Recently developed spectroscopic methods for solving these problems are preferred because they are faster, easier, and less costly than traditional methods based on DNA and protein. In the scope of the thesis, synchronous fluorescence spectroscopy (SFS) method was developed in order to identify cows, sheep, goats, and buffalo species in raw milk and fermented milk products (yogurt and cheese). The principle of the method is based on differences in the types and amounts of fluorophore compounds found in milk and dairy products. In the study, qualitative and quantitative analyzes were performed for each sample group (milk, yogurt, and cheese) with data recorded in the excitation wavelength range of 250-550 nm with Δλ = 20-100 nm in 10 nm steps. For qualitative analysis; Three models have been developed based on the smallest square-discriminant analysis (PLS-DA) method for the separation of pure and mixture samples, the classification of four different milk types and the definition of binary mix types (sheep-cow, goat-cow, and buffalo-cow). In quantitative analysis, after determining the binary mix types with the PLS-DA model, three partial smallest square (PLS) models were developed to determine the mixing ratios of cow milk in other milk types. With the PLS-DA models developed for the raw milk sample group, all milk types were successfully separated from each other. When the performances of PLS models of sheep-cow, goat-cow and buffalo-cow binary mixtures obtained by mixing with cow milk are examined, the values of high calibration and validation determination coefficient (R2) (sheep: 0.992-0.989; goat: 0.992-0.988; buffalo: 0.998-0.986) with low limit of detection (LOD) and limit of quantification (LOQ) (sheep: 4.06%-12.31%; goat: 3.52%-10.66%; buffalo: 3.52%-10.64%) values were obtained. In 3 different PLS models developed to determine the mixing ratios of binary milk mixtures in yogurt samples, R2 values of high calibration and validation (sheep-cow: 0.996-0.957; goat-cow: 0.992-0.978; buffalo-cow: 0.999-0.978) with low LOD and LOQ ( sheep-cow: 1.64% -5.47%; goat-cow: 3.25% - 10.85%; buffalo-cow: 0.46% -5.5%) values show a successful performance. When the PLS models of binary mixtures in cheese samples are examined, it has been shown that the milk ratios contained in the mixtures can be successfully determined with high calibration and validation R2 values (sheep-cow: 0.998-0.969; goat-cow: 0.996-0.981; buffalo-cow: 0.981-0.952) and low LOD and LOQ values (sheep-cow: 1.47%-4.90%; goat-cow: 3.28%-10.94%; buffalo-cow: 1.73%-5.75%).tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectSenkronize floresans spektroskopisitr_TR
dc.subjectSüt ürünleritr_TR
dc.subjectTür tayinitr_TR
dc.subjectTağşiştr_TR
dc.subjectKemometritr_TR
dc.subjectSüttr_TR
dc.subject.lcshGıda mühendisliğitr_TR
dc.titleSüt ve Süt Ürünlerinde Tür Tayinin Senkronize Floresans Spektroskopisiyle Belirlenmesitr_TR
dc.title.alternativeDetermınatıon Of Specıes In Mılk And Daıry Products By Synchronous Fluorescence Spectroscopytr_en
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetSüt endüstrisinde koyun, keçi ve manda gibi yüksek fiyatlı süt türlerinin inek sütü gibi düşük fiyatlı süt türleriyle karıştırılması ve bu nedenle süt türlerinin saflığının belirlenememesi, gerçek etiketlemenin doğru yapılamaması dünya genelinde yaygın bir sorun haline gelmiştir. Bu sorunların çözümüne yönelik son zamanlarda geliştirilen spektroskopik yöntemler, DNA ve protein bazlı geleneksel yöntemlere nazaran daha hızlı, pratik ve düşük maliyetli olması sebebiyle tercih edilmektedir. Tez kapsamındaki çalışmada çiğ süt ve fermente süt ürünlerinde (yoğurt ve peynir) inek, koyun, keçi ve manda türlerinin tanımlanması amacıyla senkronize floresans spektroskopisi (SFS) yöntemi geliştirilmiştir. Yöntemin prensibi, süt ve süt ürünlerinde bulunan florofor bileşiklerinin tür ve miktarlarındaki farklılıklara dayanmaktadır. Çalışmada, 10 nm’lik adımlarla Δλ= 20-100 nm olacak şekilde 250-550 nm uyarma dalga boyu aralığında kaydedilen verilerle her bir örneklem grubu (süt, yoğurt ve peynir) için kalitatif ve kantitatif analizler gerçekleştirilmiştir. Kalitatif analizler için; saf ve karışım numunelerinin ayrılması, dört farklı süt türünün sınıflandırılması ve ikili karışım türlerinin (koyun-inek, keçi-inek ve manda-inek) tanımlanması amacıyla kısmı en küçük kare-diskriminant analiz (PLS-DA) yöntemine dayalı üçer tane model geliştirilmiştir. Kantitatif analizlerde ikili karışım türlerin PLS-DA modeli ile belirlenmesinden sonra, inek sütünün diğer süt türlerinde karıştırma oranlarını tespiti için üçer adet kısmi en küçük kare (PLS) modelleri geliştirilmiştir. Çiğ süt örneklem grubu için geliştirilen PLS-DA modelleri ile tüm süt türleri başarılı bir şekilde birbirinden ayrılmıştır. İnek sütü ile karıştırılarak elde edilen koyun-inek, keçi-inek ve manda-inek ikili karışımların PLS modellerinin performansları incelendiğinde sırasıyla yüksek kalibrasyon ve validasyon belirleme katsayısı (R2) değerleri (koyun: 0,992-0,989; keçi: 0,992-0,988; manda: 0,998- 0,986) ile düşük tespit limiti (LOD) ve tayin limiti (LOQ) (koyun: %4,06-%12,31; keçi: %3,52-%10,66; manda: %3,52-%10,64) değerleri elde edilmiştir. Tez kapsamında çalışılan yoğurt ve peynir fermente süt ürünleri için geliştirilen PLS-DA modelleri ile sınıflandırmalar başarılı bir şekilde gerçekleştirilmiştir. İkili karışım şeklinde hazırlanan yoğurt örneklerindeki süt türlerinin karıştırma oranlarının belirlenmesi amacıyla geliştirilen 3 farklı PLS modeli için yüksek kalibrasyon ve validasyon R2 değerleri (koyun-inek: 0,996-0,957; keçi-inek: 0,992-0,978; manda-inek: 0,999-0,978) ile düşük LOD ve LOQ (koyun-inek: %1,64-%5,47; keçi-inek: %3,25- %10,85; manda-inek: %0,46-%1,55) değerleri başarılı bir performans ortaya koyduğunu göstermektedir. Peynir örneklerinin ikili karışımlarına ait PLS modelleri incelendiğinde ise karışımların içerdiği süt oranlarının yüksek kalibrasyon ve validasyon R2 değerleri (koyun-inek: 0,998-0,969; keçi-inek: 0,996-0,981; manda-inek: 0,981-0,952) ile düşük LOD ve LOQ (koyun-inek: %1,47-%4,90; keçi-inek: %3,28-%10,94; manda-inek: %1,73-%5,75) değerleriyle başarılı şekilde belirlenebildiği gösterilmiştir.tr_TR
dc.contributor.departmentGıda Mühendisliğitr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2020-09-17T10:00:51Z
dc.fundingTÜBİTAKtr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster