Show simple item record

dc.contributor.advisorAydın, Halil Murat
dc.contributor.authorAktas, Kuntay
dc.date.accessioned2020-09-17T09:58:42Z
dc.date.issued2019-10-22
dc.date.submitted2019-09-26
dc.identifier.citation1. J. Zheng, X. Chen, W. Jiang, S. Zhang, M. Chen and C. Yang, An İnnovative Total Temporomandibular Joint Prosthesis with Customized Design and 3D Printing Additive Fabrication: A Prospective Clinical Study, Journal of Translational Medicine, 17(1) (2019) doi:10.1186/s12967-018-1759-1 2. ASTM Internatioan, Committee F42 on Additive Manufacturing Technologies. https://www.astm.org/COMMITTEE/F42.htm (Erişim tarihi: 6 Eylül 2019). 3. Wohlers Report 2014 – 3D Printing and Additive Manufacturing State of the Industry, Annual 666 Worldwide Progress Report, Wohlers Associates, 2014. 4. Y. Volpe, R. Furferi, L. Governi, F. Uccheddu, M. Carfagni, F. Mussa, M. Scagnet and L. Genitori, Surgery of complex Craniofacial Defects: A Single-Step AM-Based Methodology, Comput Methods Programs Biomed, 165 (2018) 225-233 doi: 10.1016/j.cmpb.2018.09.002. 5. X. Zheng, K. Wu, J. Wang, L. Ma, J. Yu and J. Xu, Mechanical Characteristics of Medical Grade UHMWPE Under Dynamic Compression, J Mater Sci Mater Med, 30(5) (2019) 50 doi: 10.1007/s10856-019-6254-6. 6. M. Kaur and K. Singh, Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications, Mater Sci Eng C Mater Biol Appl, 102 (2019) 844-862 doi: 10.1016/j.msec.2019.04.064. 7. V. Petrovic, J. Gonzales, O. Ferrando, J. Gordillo, J. Puchades and L. Grinan, Additive Layered Manufacturing: Sectors of İndustrial Applications Shown Through Case Studies, International Journal of Production Research, 49 (2011) 1061-1079. 8. commons.wikimedia.org (Erişim tarihi: 6 Eylül 2019). 9. H. İ. İmiroğlu, Z. Tosun, İ. Kaymaz, C. Sever, O. Akdağ and M. N. Selimoğlu, Yeni Bir TMJ İmplant Tasarımı, Süleyman Demirel Üniversitesi Mühendislik Bilimleri ve Tasarım Dergisi, 2(3) (2014)199-210. 10. S. Ingawale and T. Goswami, Temporomandibular Joint: Disorders, Treatments and Biomechanics, 5(37) (2009) 976-996. 11. Ç. Küçükeşmen ve H. Sönmez, Çocuklarda ve adelösanlarda, temporomandibular eklem disfonksiyon sendromu, S.D.Ü Tıp Fakültesi Dergisi, 14(3) (2007) 39-47. 12. E. V. Zyl, https://www.docshop.com/education/dental/general-dentistry/tm (Erişim tarihi: 10 Eylül 2019). 13. X. Xu, D. Luo, C. Guo , Q. Rong, A Custom-Made Temporomandibular Joint Prosthesis for Fabrication by Selective Laser Melting: Finite Element Analysis, Med Eng Phys, 46 (2017) 1-11. 14. G. Dimitroulis, S. Austin, P. V. S. Lee, D. Ackland, A New Three-Dimensional, Print-on-Demand Temporomandibular Prosthetic Total Joint Replacement System: Preliminary Outcomes, J Craniomaxillofac Surg, 46(8) (2018) 1192-1198. 15. K.I. Murakami, M. Matsuka, T. Iizuka and T. Ono, Recapturing the Persistent Anteriorly Displaced Disk by Maniplation after Pumping and Hydraulic Pressure to the Upper Joint Cavity of the Temporomandibular Joint, J Craniomandib Pract 5 (1987) 17-24. 16. D.W. Nitzan, M.F. Dolwick, G.A. Martinez. Temporomandibular Joint Arthrocentesis: A Simplified Treatment for Severe, Limited Mouth Opening, J Oral Maxillofac Surg, 49 (1991) 1163-1167. 17. J.P. McCain. Arthroscopy of the Human Temporomandibular Joint, J Oral Maxillofac Surg, 46 (1988) 648–655. 18. S. Srouji, D. Oren, A. Zoabi, O. Ronen and H. Zraik, Temporomandibular joint arthroscopy technique using a single working cannula. Int J Oral Maxillofac Surg, 45(11) (2016) 1490-1494 doi: 10.1016/j.ijom.2016.05.016. 19. C. Guo, Z. Shi and P. Revington, Temporomandibular Joint Arthrocentesis and Lavage, Evidence Based Dentistry, 10 (2009) 110. 20. D.E. Frost and B.D. Kendell, The Use of Arthrocentesis for Treatment of Temporomandibular Joint Disorders, J Oral Maxillofac Surg, 57 (1999) 583-587. 21. T.A: Carroll, K. Smith and J. Jakubovski, Extradural Haematoma Following Temporomandibular Joint Arthrocentesis and Lavage. Br J Neurosurg, 14 (2000) 152-154. 22. S. Tozoglu, F.A. Al-Belasy and M.F. Dolwick, A Review of Techniques of Lysis and Lavage of the TMJ, Br J Oral Maxillofac Surg, 49 (2011) 302-309. 23. A. Yıldız ve E. Esen, Temporomandibular Eklem Artroskopisinde Komplikasyonlar, Turkiye Klinikleri J Dental Sci, 13(2) (2007) 55-62. 24. L. Pozzer, S. Olate, M. Moraes, L. Asprino, J. R. de Albergaría Barbosa, Variation in the Repair of a Rib Graft used for Mandibular Reconstruction after 20 years, International Journal of Morphology 33(2) (2015) 719-724. 25. L. G. Mercuri, The Role of Custom-Made Prosthesis for Temporomandibular Joint Replacement, Revista Española de Cirugía Oral y Maxilofacial, 35 (2013) 1-10. 26. L. M. Wolford and P. Mehra, Custom-Made Total Joint Prostheses for Temporomandibular Joint Reconstruction, Proc (Bayl Univ Med Cent), 13(2) (2000) 135-138. 27. N. De Meurechy, A. Braem and M. Y. Mommaerts, Biomaterials in temporomandibular joint replacement: current status and future perspectives—a narrative review, Int J Oral Maxillofac Surg, 47(4) (2018) 518-533. 28. J. Kraeima, F. K. Spijkervet and M. J. Witjes, Development of a patient-specific temporomandibular joint prosthesis, (2018). 29. L. M. Wolford, M. C. Pitta, O. Reiche-Fischel, P. F. Franco, TMJ Concepts/Techmedica custom-made TMJ total joint prosthesis: 5-year follow-up study, Int J Oral Maxillofac Surg, 32(3) (2003) 268-274. 30. G. Gerbino, E. Zavattero, G. Bosco, S. Berrone and G. Ramieri, Temporomandibular joint reconstruction with stock and custom-made devices: Indications and results of a 14-year experience, Journal of Cranıo-Maxıllofacıal Surgery, 45(10) (2017) 1710-1715. 31. E. Aagaard and T. Thygesen, A Prospective, Single-Centre Study on Patient Outcomes Following Temporomandibular Joint Replacement Using a Custom-Made Biomet TMJ prosthesis, Int J Oral Maxillofac Surg, 43(10) (2014)1229-1235 doi: 10.1016/j.ijom.2014.05.019. 32. L. G. Mercuri, Alloplastic temporomandibular joint replacement: rationale for the use of custom devices, Int J Oral Maxillofac Surg, 41(9) (2012) 1033-1040. 33. Y.C. Wu C.N. Kuo, Y.C. Chung, C.H. Ng and J.C. Huang, Effects of Electropolishing on Mechanical Properties and Bio-Corrosion of Ti6Al4V Fabricated by Electron Beam Melting Additive Manufacturing. Materials (Basel), 12(9) (2019) pii: E1466. doi: 10.3390/ma12091466. 34. S. Bsat, S.A. Yavari, M. Munsch, E.R. Valstar, A.A. Zadpoor, Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability. Materials (Basel). 8(4) (2015)1612-1625. doi: 10.3390/ma8041612. 35. A. T. Sidambe, Biocompatibility of Advanced Manufactured Titanium Implants—A Review. Materials, 7(12) (2014) 8168-8188. 36. I. Gibson and A. Srinath, Simplifying Medical Additive Manufacturing: Making the Surgeon the Designer, Procedia Technology, 20 (2015) 237-242. 37. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brand, Y.M. Xie, Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review, Biomaterials, 83 (2016) 127-141. 38. Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu and S.B. Tor, Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review, Materials & Design, 139 (2018) 565-586. 39. W.E. Frazie, Metal Additive Manufacturing: A Review, Journal of Materials Engineering and Performance, 23(6) (2014) 1917–1928. 40. P. Edwards, A. O'Conner and M. Ramulu, Electron Beam Additive Manufacturing of Titanium Components: Properties and Performance. J. Manuf. Sci. Eng, 135(6) (2013) 061016. 41. B. Dutta, H. Francis and S. Froes, The Additive Manufacturing (AM) of Titanium Alloys, Titanium Powder Metallurgy Science, Technology and Applications, (2015) 447-468. 42. H.A. Scheetz and R.C. Gilles, Melt Processable UHMWPE, United States Patent, US4281070 (1981). 43. J.B. Meding, E.M. Keating, K.E. Davis, Acetabular UHMWPE Survival and Wear Changes With Different Manufacturing Techniques, Clinical Orthopaedics and Related Research, 469(2) (2011) 405–411. 44. J. Huber, A. Walter, W. Plitz, H.J. Refior, Effect of the Manufacturing Process on Creep and Wear Properties of UHMWPE (Ultra-High Molecular Weight Polyethylene). Biomedizinische Technik. Biomedical Engineering, 40(4) (1995) 88-92. 45. A. Emelogu, M. Marufuzzaman, S.M. Thompson, N. Shamsaei, L. Bian, Additive Manufacturing of Biomedical İmplants: A feasibility Assessment Via Supply-Chain Cost Analysis. Additive Manufacturing, 11 (2016) 97-113. 46. E. Atzeni and A. Salmi, Economics of Additive Manufacturing for end-Usable Metal Parts, The International Journal of Advanced Manufacturing Technology, 62(9–12) (2012) 1147–1155. 47. J.R. Crookall, The Performance-Envelope Concept in the Economics of Machining. International Journal of Machine Tool Design and Research, 9(3) (1969) 261-278. 48. D.S: Ermer, Optimization of the Constrained Machining Economics Problem by Geometric Programming, J. Eng. Ind, 93(4) (1971) 1067-1072. 49. R.G. Fenton and N.D. Joseph, The Effects of the Statistical Nature of Tool-Life on the Economics of Machining. International Journal of Machine Tool Design and Research, 19(1) (1979) 43-50. 50. B.K. Lambert and A.G. Walvekar, Optimization of Multi-Pass Machining Operations. International Journal of Production Research, 16(4) (1978) 259-265. 51. M. Cronskär, The Use of Additive Manufacturing in the Custom Design of Orthopedic Implants, Thesis for the Degree of Licentiate of Technology, Department of Technology and Sustainable Development Mid Sweden University, Östersund – Sweden, 2011. 52. C.L. Ventola, Medical Applications for 3D Printing: Current and Projected Uses. P&T, 39(10) (2014) 704–711. 53. F. Rengier, A. Mehndiratta, H. von Tengg-Kobligk, C.M. Zechmann, R. Unterhinninghofen, H.U. Kauczor, F.L Giesel, 3D Printing Based on İmaging Data: Review of Medical Applications, International Journal of Computer Assisted Radiology and Surgery, 5(4) (2010) 335–341. 54. G. Tapia and A. Elwany, A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing, J. Manuf. Sci. Eng, 136(6) (2014) 060801. 55. B. Cheng, S. Price, J. Lydon, K. Cooper, K. Chou, On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Model Development and Validation, J. Manuf. Sci. Eng, 136(6) (2014) 061018. 56. M. Niinomi, Metals for Biomedical Devices. 2. Ed. Woodhead Edition, United Kingdom, 2019. 57. M. Cronskär, M. Bäckström, L.E. Rännar, Production of Customized Hip Stem Prostheses – A Comparison Between Conventional Machining and Electron Beam Melting (EBM), Rapid Prototyping Journal, 19(5) (2013) 365-372. 58. K.S. Chan, M. Koike, R.L. Mason and T. Okabe, Fatigue Life of Titanium Alloys Fabricated by Additive Layer Manufacturing Techniques for Dental Implant, Metallurgical and Materials Transactions A, 44(2) (2013) 1010–1022. 59. E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, C. Emmelmann, Effects of Defects in Laser Additive Manufactured Ti-6Al-4V on Fatigue Properties. Physics Procedia, 56 (2014) 371-378. 60. Materialise, Your Production and R&D Solution to Ensure Quality, https://www.materialise.com/en/software/inspector (Erişim tarihi: 7 Eylül 2019). 61. E. Uhlmann, R. Kersting, T.B. Klein, M.F. Cruz and A.V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components, Procedia CIRP, 35 (2015) 55-60. 62. S. Tammas-Williams, P.J. Withers, I. Todd, P.B. Prangnell, Porosity Regrowth During Heat Treatment of Hot Isostatically Pressed Additively Manufactured Titanium Components, Scripta Materialia, 122 (2016) 72-76. 63. D.L. Bourell, D.W. Rosen and M.C. Leu, The Roadmap for Additive Manufacturing and Its Impact, 3D Printing and Additive Manufacturing, 1(1) (2014) 6-9. 64. Y. Sen, Y. Zhang, Y. Qian and M. Morgan, A Comparison of Medical İmage Segmentation Methods for Cerebral Aneurysm Computational Hemodynamics. IEEE, (2011) doi: 10.1109/BMEI.2011.6098437. 65. Leonhard Hitzler 1,* ID , Johann Hirsch 2 , Burkhard Heine 2 , Markus Merkel 2 , Wayne Hall 1 and Andreas Öchsner 1 On the Anisotropic Mechanical Properties of Selective Laser-Melted Stainless Steel. 66. B. Beşergil, Kompozitler, 2016. 67. https://www.sculpteo.com/blog/2017/03/14/list-of-professional-3d-printers/m2-cusing-concept-laser/.tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/22670
dc.description.abstractThe Temporomandibular Joint (TMJ) is a small joint located at the junction of the skull and the lower jaw in front of the ear. It provides movement and function of the lower jaw (mandible). Any damage (usually trauma, infection, tumor, ankylosis or idiopathic resorption) causes the jaw to fail to function properly or completely lose its function. Based on the findings of the research, many methods have been tried to treat the temporomandibular joint disorders encountered in more women from the past to the present. Initially, there were temporary solutions, but these were replaced by bone graft transplants and implant applications. While bone graft transplants were a good solution in the first place, it was the tendency to implant applications based on the idea that it could be more compatible with the developing technology. On the other hand, many years of implant designs, productions and clinical studies are taking place in the market. In this thesis, “Design of Custom made Temporomandibular Joint Implant” has been developed by using ‘Additive Manufacturing’ method which are called new production technology and offering new design opportunities and using by advanced ‘Design’ techniques along with radiological images of patient.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.subjectTMEtr_TR
dc.subjectKatmanlı imalattr_TR
dc.subject3 Boyutlu yazıcıtr_TR
dc.subjectModellemetr_TR
dc.subjectTitanyum eklem implantıtr_TR
dc.titleKişiye Özel Temporamandibular Eklem Protezinin Tasarlanması ve Katmanlı İmalat Teknolojisi ile Üretimitr_TR
dc.title.alternativeDesıgn of Temporamandıbular Joınt Implant and Productıon Wıth Addıtıve Manufacturıng Technology
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetTemporomandibular eklem (TME) kulağın önünde, kafatası ile alt çenenin birleştiği noktada bulunan küçük bir eklemdir. Alt çenenin (mandibula) hareket etmesini ve fonksiyonunu sağlar. Burada oluşan herhangi bir hasar (genellikle travma, enfeksiyon, tümör, ankiloz veya idiopatik rezorpsiyon) çenenin fonksiyonunu tam olarak yerine getirememesine veya fonksiyonunu tamamen kaybetmesine yol açar. Araştırmalardaki bulgulara dayanarak geçmişten günümüze daha çok kadınlarda rastlanan temporomandibular eklem rahatsızlıklarının tedavisi için pek çok yöntem denenmiştir. Başlangıçta geçici çözümler bulunurken sonrasında bunlar yerini kemik grefti nakillerine ve implant uygulamalarına bırakmıştır. Kemik greft nakilleri öncelerde iyi bir çözüm iken gelişen teknolojiyle birlikte hastaya daha uyumlu olabileceği düşüncesinden yola çıkarak implant uygulamalarına yönelim olmuştur. Bunun üzerine yıllardır süre gelen implant tasarımları, üretimleri ve klinik çalışmaları piyasada yerini almaktadır. Bu tezde yeni bir üretim teknolojisi olarak adlandırılan ve yeni tasarım imkanları sunan “Katmanlı İmalat” yöntemi ve gelişmiş “Tasarım” teknikleri ile hastanın radyolojik görüntüleri kullanılarak “Hastaya Özel Temporomandibular Eklem Protezi Tasarımı” geliştirilmiştir.tr_TR
dc.contributor.departmentBiyomühendisliktr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2020-09-17T09:58:42Z
dc.fundingYoktr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess