Basit öğe kaydını göster

dc.contributor.advisorGüven, Olgun
dc.contributor.authorÖztürk, Hande
dc.date.accessioned2020-09-17T09:54:28Z
dc.date.issued2020
dc.date.submitted2020-01-31
dc.identifier.citation[1] T. Wüstenberg, Cellulose and Cellulose Derivatives in the Food Industry, Wiley-VCH, Germany, Chapter 3, 2015 [2] D. Klemm, H. P. Schmauder, T. Heinze, Biopolymers Online: Cellulose, S. Baets, E. Vandamme (Eds.), Wiley - VCH, Canada, Part 6, 2005. [3] A. D. French, Discoveries in Plant Biology, S. Kung, S. Yang (Eds.), Vol. 3, World Scientific, Singapore, Chapter 8, 2000. [4] Cellulose Fibers: Bio and Nano Polymer Composites, S. Kalia, B. S. Kaith, I. Kaur (Eds.), Springer, Berlin, 7, 2011. [5] A. M. Stephen, Polysaccharides and Their Applications, G. O. Philips, P. A. Williams (Eds.), 2nd Edn, Taylor & Francis Group, Florida, 147 - 179, 2006. [6] R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev., Cellulose nanomaterials review: structure, properties and nanocomposites, 40 (2011) 3941. [7] S. Kimura, T. Itoh, Cellulose, Cellulose synthesizing terminal complexes in the ascidians, 11 (2004) 377. [8] P. Gatenholm, D. Klemm, MRS Bulletin, Bacterial Nanocellulose as a Renewable Material for Biomedical Applications, 35 (2010) 208. [9] D. Klemm, B. Heubein, H. P. Fink, A. Bohn, Angew. Chem. Int. Ed., Cellulose: fascinating biopolymer and sustainable raw material, 44 (2005) 3359. [10] Anonim, European Coatings Journal,12, 36–41, 2005. [11] K. Balser, M. Iseringhausen, Cellulose ether, Ullmanńs Encyclopedia of Industrial Chemistry, E. Bartholomé (Ed.), Vol. 9, 4th edn, Verlag Chemie, Weinheim, 192–212, 1975. [12] V. Ribitsch, Textile fiber modification (physico-chemical characterization of viscose fibers to develop an environmentally friendly manufacturing process), Federal Ministry for Transport, Innovation and Technology, BMVIT, Reports on Energy and Environmental Research, No: 21, Germany, 2002. [13] A. G. Cunha, A. Gandini, Cellulose, Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose, 17 (2010) 876. [14] D. Klemm, B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht, Comprehensive Cellulose Chemistry: Fundamentals and Analytical Methods, Vol. 2, Wiley-VCH, Germany, Chapter 2, 1998. [15] K. Choi, C. Y. Gao, J. D. Nam, H. J. Choi, Materials, Cellulose-Based Smart Fluids under Applied Electric Fields, 10 (2017) 1060. [16] H. A. Krassig, Cellulose: structure, accessibility and reactivity, Gordon and Breach Science Publishers, Amsterdam, 1993. [17] T.Wüstenberg, Cellulose and Cellulose Derivatives in the Food Industry, Wiley-VCH, Germany, Chapter 4, 2015. [18] A. Chartrand, J. M. Lavoie, M. A. Huneault, Appl. Polym. Sci., Surface modification of microcrystalline cellulose (MCC) and its application in LDPE based composites, 134 (2017) 44348. [19] J. C. Roberts, Paper chemistry, 2nd edn., Chapman & Hall, London, 1996. [20] J. M. Gess, D. S. Rende, Tappi Journal, Alkenyl succinic anhydride (ASA), Vol. 4, 9 (2005) 25. [21] T. Lindstrom, P. T. Larsson, Nord Pulp Paper Res. Journal, Alkyl ketene dimer (AKD) sizing - a review, 23 (2008) 202–209. [22] H. Zhang, D. Kannangara, M. Hilder, R. Ettl, W. Shen, Colloid Surf A, The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides, 297 (2007) 203. [23] O. Werner, C. Quan, C. Turner, B. Petterson, L. Wagberg, Cellulose, Properties of superhydrophobic paper treated with rapid expansion of supercritical CO2 containing a crystallizing wax, 17 (2010) 187. [24] T. A. Dankovich, Y. L. Hsieh, Cellulose, Surface modification of cellulose with plant triglycerides for hydrophobicity, 14 (2007) 469. [25] R. Jantas, K. Gorna, Fibres Text East Eur, Antibacterial finishing of cotton fabrics. 14 (2003) 88. [26] M. Janoobi, J. Harun, A. P. Mathew, M. Z. B. Hussein, K. Oksman, Cellulose, Preparation of cellulose nanofibers with hydrophobic surface characteristics, 17 (2010) 299. [27] M. Pagliaro, R. Ciriminna, Jour. Mater. Chem., New fluorinated functional materials, 15 (2005) 4981. [28] M. Ostenson, H. Jarund, G. Toriz, P. Gatenholm, Cellulose, Determination of surface functional groups in lignocellulosic materials by chemical derivatization and ESCA analysis, 13 (2006) 157. [29] H. Yuan, Y. Nishiyama, S. Kuga, Cellulose, Surface esterification of cellulose by vapor-phase treatment with trifluoroacetic anhydride, 12 (2005) 543. [30] A. G. Cunha, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, Jour. Colloid Interface Sci., Reversible hydrophobization and lipophobization of cellulose fibers via trifluoroacetylation, 301 (2006) 333. [31] A. G. Cunha, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, E. Orblin, P. Fardim, Jour. Colloid Interface Sci., Characterization and evaluation of the hydrolytic stability of trifluoroacetylated cellulose fibers, 316 (2007) 360. [32] D. Nyström D, J. Lindqvist, E. Ostmark, P. Antoni, A. Carlmark, A. Hult, E. Malmstrom, ACS Appl. Mater. Inter., Superhydrophobic and selfcleaning bio-fiber surfaces via ATRP and subsequent postfunctionalization, 1 (2009) 816. [33] A. G. Cunha, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, E. Orblin, P. Fardim, Biomacromolecules, Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates, 8 (2007) 1347. [34] A. G. Cunha, C. S. R. Freire, A. J. D. Silvestre, C. P. Neto, A. Gandini, E. Orblin, P. Fardim, Langmuir, Bi-phobic cellulose fiber derivatives via surface trifluoropropanoylation, 23(2007) 10801. [35] M. Castellano, A. Gandini, P. Fabbri, M. N. Belgacem, J. Colloid Interface Sci., Modification of cellulose fibres with organosilanes: under what conditions does coupling occur?, 273 (2004) 505. [36] A. V. Gonzalez, J. M. C. Uc, R. Olayo, P. J. H. Franco, Compos B, Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced Composites. 30 (1999) 309. [37] A. V. Gonzalez, J. M. C. Uc, R. Olayo, P. J. H. Franco, Compos B, Chemical modification of henequen fibers with an organosilane coupling agent, 30 (1999) 321. [38] A. Abdelmouleh, S. Boufi, M. N. Belgacem, A. P. Duarte, A. B. Salah, A. Gandini, Int. Journal of Adhesion & Adhesives, Modification of cellulosic fibres with functionalised silanes: development of surface properties, 24 (2004) 44. [39] D. Pasquini, M. N. Belgacem, A. Gandini, A. A. S. Curvelo, Journal of Colloid and Interface Science, Surface esterification of cellulose fibers: Characterization by DRIFT and contact angle measurements, 295 (2006) 80. [40] C. Gaiolas, A. P. Costa, M. Nunes, M. J. S. Silva, M. N. Belgacem, Plasma Process Polym., Grafting of paper by silane coupling agents using cold-plasma discharge, 5 (2008) 444. [41] C. Gaiolas, M. N. Belgacem, L. Silva, W. Thielemans, A. P. Costa, M. Nunes, M. J. S. Silva, J Colloid Interface Sci., Green chemicals and process to graft cellulose fibers, 330 (2009) 29. [42] B. Ly, M.N. Belgacem, J. Bras, M.C.B. Salon, Mater Sci. Eng. C., Grafting of cellulose by fluorine-bearing silane coupling agents, 30 (2009) 343. [43] E. Erasmus, F. A. Barkhuysen, Indian J. Fibre Text. Res., Superhydrophobic cotton by fluorosilane modification, 34 (2009) 377. [44] B. Tomsic, B. Simoncic, B. Orel, L. Cerne, P. F. Tavcer, M. Zorko, I. Jerman, A. Vilcnik, J. Kovac, J. Sol Gel Sci. Technol., Sol-gel coating of cellulose fibres with antimicrobial and repellent properties, 47 (2008) 44. [45] H. T. Sahin, S. Manolache, R. A. Young, F. Denes, Cellulose, Surface fluorination of paper in CF4-RF plasma environments, 9 (2002) 171. [46] B. Balu, V. Breedveld, D. W. Hess, Langmuir, Fabrication of ‘‘rolloff’ and ‘‘sticky’’ superhydrophobic cellulose surfaces via plasma processing, 24 (2008) 4785. [47] R. Barni, S. Zanini, D. Beretta, C. Riccardi, Eur. Phys. J. Appl. Phys., Experimental study of hydrophobic/hydrophilic transition in SF6 plasma interaction with polymer surfaces, 38 (2007) 263. [48] G. Gonçalves, P.A.A.P. Marques, T. Trindade, C.P. Neto, A. Gandini, J. Colloid Interface Sci., Superhydrophobic cellulose nanocomposites, 324 (2008) 42. [49] G. Gonçalves, P.A.A.P. Marques, R. J. B. Pinto, T. Trindade, C.P. Neto, Compos Sci. Technol., Surface modification of cellulosic fibres for multipurpose TiO2 based nanocomposites, 69 (2009) 1051. [50] S. Li, Y. Wei, J. Huang, Chem Lett., Facile fabrication of superhydrophobic cellulose materials by a nanocoating approach, 39 (2010) 2. [51] W. Tang, Y. Huang, W. Meng, F. L. Qing, Eur Polym. J., Synthesis of fluorinated hyperbranched polymers capable as highly hydrophobic and oleophobic coating materials, 46 (2010) 506. [52] O. Paquet, M. Krouit, J. Bras, W. Thielemans, M. N. Belgacem, Acta Materialia, Surface modification of cellulose by PCL grafts, 58 (2010) 795. [53] X. Dong, Y. Dong, M. Jiang, L. Wang, J. Tong, J. Zhou, Industrial Crops and Products, Modification of microcrystalline cellulose by using soybean oil for surface hydrophobization, 46 (2013) 302. [54] K. Hemvichian, P. Suwanmala, W. Kangrumrith, S. Prapanee, K. Inchoto, T. Pongprayoon, O. Güven, J. Appl. Polym. Sci., Enhancing compatibility between poly(lactic acid) and thermoplastic starch using admicellar polymerization, 133 (2016) 2. [55] B. Kitiyanan, J. J. O'Haver, J. H. Harwell, S. Osuwan, Adsolubilization of Styrene and Isoprene in Cetyltrimethylammonium Bromide Admicelle on Precipitated Silica, 12 (1996) 2163. [56] A. M. Gaudin, D.W.Fuerstenan, AIME Trans., Fundamental principles of dissolved air floatation of industrial waste 2(1955) 958. [57] M. A. Yeskie, J. H. Harwell, J. Phys. Chem., On the structure of aggregates of adsorbed surfactants: the surface charge density at the hemimicelle/admicelle transition, 92 (1988) 2351. [58] S. Boufi, A. Gandini, Cellulose, Formation of polymeric films on cellulosic surfaces by admicellar polymerization, 00 (2002) 2. [59] T. Pongprayoon, N. Yanumet, E. A. O'rear, Journal of Colloid and Interface Science, Admicellar Polymerization of Styrene on Cotton, 249 (2002) 227. [60] K. N. Ulman, S. R. Shukla, Advances in Polymer Technology, Admicellar Polymerization and Its Application in Textiles, 35 (2016) 3. [61] S. Sangthong, T. Pongprayoon, N. Yanumet, Composites: Part A, Mechanical property improvement of unsaturated polyester composite reinforced with admicellar-treated sisal fibers, 40 (2009) 688. [62] J. Song, O. J. Rojas, Nordic Pulp & Paper Research Jour. , Approaching super-hydrophobicity from cellulosic materials: A Review, 28 (2013) 221. [63] T. Pongprayoon, A. A. O'Rear, N. Yanumet, W.L. Yuan, Wettability of Cotton Modified by Admicellar Polymerization, Langmuir, 19 (2003) 3771. [64] P. Kothary, N. Yanumet, E. A. O'Rear, Fibers and Polymers, Surfactant Effects on Application of a Hydrophobic, Fluoropolymer Coating to Cotton by Admicellar Polymerizaton, 14 (2013) 711. [65] E. Trovatti, A. M. Ferreira, A. J. F. Carvalho, S. J. L. Ribeiro, A. Gandini, Jour. of Colloid and Interface Science, Sleeving nanocelluloses by admicellar polymerization, 408 (2013) 257. [66] S. E. Selke, I. Wichman, Composites: Part A, Wood fiber/polyolefin composites, 35 (2004) 321. [67] I. Spiridon, Cellulose Chem. and Technol., I.Natural Fiber-Polyolefin Composites. Mini-Rewiew, 48 (2014) 602. [68] J. Girones, M. T. B. Pimenta, F. Vilaseca, A.J.F. de Carvalho, P. Mutje, A.A.S. Curvelo, Carbohydrate Polymers, Blocked isocyanates as coupling agents for cellulose-based composites, 68 (2007) 537. [69] Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, C. Mai, Composites: Part A, Silane coupling agents used for natural fiber/polymer composites: A review, 41 (2010) 806. [70] A. K. Bledzki, A. Al-Mamun, M.M. Lucka Gabor, V. Gutowski, eXPRESS Polymer Letters, The effects of acetylation on properties of flax fibre and its polypropylene composites, 2 (2008) 413. [71] A. Abu Saleh, S. Islam, H. Azman, M. Haafiz, Fibers and Polymers, Impact of Succinic Anhydride on the Properties of Jute Fiber/ Polypropylene Biocomposites, 15 (2013) 307. [72] X. Li, L. G. Tabil, S. Panigrahi, Polym. Environ., Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review, 15 (2007) 25. [73] L. Wei, A. G. McDonald, C. Freitag, J. J. Morrell, Polym. Degrad. Stabil., Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites, 98 (2013) 1348. [74] M. M. Kabir, H. Wang, K. T. Lau, Compos. Part B: Engineering, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, 43 (2012) 2883. [75] F. Corrales, F. Vilaseca, M. Llop, J. Gironès, J. A.Méndez et al., J. Hazard. Mater., Chemical modification of jute fibers for the production of green-composites. 144 (2007) 730. [76] B. Amor, M. Arous, A. Kallel, J. Electrostat., Effect of maleic anhydride on dielectric properties of natural fiber composite, 72 (2014) 156. [77] M. Pöllänen, M. Suvanto, T. T. Pakkanen, Compos. Sci. Technol., Cellulose reinforced high density polyethylene composites — Morphology, mechanical and thermal expansion properties, 76 (2013) 21. [78] J. Park, S. T. Quang, B. Hwang, K. L. DeVries, Compos. Sci. Technol., Interfacial evaluation of modified Jute and Hemp fibers/ poylpropylene (PP)- maleic anhydride polypropylene copolymers (PP -MAPP) compositeds using micromechanical technique and nondestructive acoustic emission, 66 (2006) 2686. [79] H. S. Kim, B. H. Lee, S. W. Choi, S. Kim, H. J. Kim, Compos. A: Appl. Sci. Manuf., The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites, 38 (2007)1473. [80] A. Arbelaiz, B. Fernández, J. A. Ramos, A. Retegi, R. Llano-Ponte, Compos. Sci. Technol., Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling, 65 (2005) 1582. [81] U. K. Dwivedi, Navin Chand, J. Mater. Process. Tech., Effect of coupling agent on abrasive wear behaviour of chopped jute fibre-reinforced polypropylene composites, 209 (2009) 5371. [82] H. Gao, Y. Xie, R. Ou, Q. Wang, Compos. A: Appl. Sci. Manuf., Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood–plastic composites, 43 (2012) 150. [83] A. El-Sabbagh, Compos. Part B: Eng., Effect of coupling agent on natural fiber in natural fiber /polypropylene composites on mechanical and thermal behaviour, 57 (2014) 126. [84] O. Guven, S. Monteiro, E. A. B. Moura, J. Drelich, Polymer Reviews, Re-Emerging Field of Lignocellulosic Fiber - Polymer Composites and Ionizing Radiation Technology in their Formulation, 56 (2016) 717. [85] K. Okubo, T. Fujii, Y. Yamamoto, Compos. A: Appl. Sci. Manuf., Development of bamboo-based polymer composites and their mechanical properties, 35 (2004) 377. [86] A. K. Bledzki, A. A. Mamun, A. Jaszkiewicz, K. Erdmann, Compos. Sci. Technol., Polypropylene composites with enzyme modified abaca fibre 70 (2010) 854. [87] A. A. Mamun, H. P. Heim, D. H. Beg, T. S. Kim, S. H. Ahmad, Compos. A: Appl. Sci. Manuf., PLA and PP composites with enzyme modified oil palm fibre: A comparative study, 53 (2013) 160. [88] A. L. Bychkov, E. I. Ryabchikova, K. G. Korolev, O. I. Lomovsky, Biomass. Bioenerg., Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material 47 (2012) 260. [89] K. G. Satyanarayana, G. G. C. Arizaga, F. Wypych, Prog. Polym. Sci., Biodegradable composites based on lignocellulosic fibers - An overview. 34 (2009) 982. [90] Y. Li, K. L. Pickering, R. L. Farrell, Compos. Sci. Technol., Determination of interfacial shear strength of white rot fungi treated hemp fibre reinforced polypropylene 69 (2009) 1165. [91] H. P. S. Abdul Khalil, I. U. H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan et al., Mater. Design, Bamboo fibre reinforced biocomposites: A review 42 (2012) 353. [92] E. F. Cerqueira, C. A. R. P. Baptista, Procedia Eng., Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites, 10 (2011) 2046. [93] F. J. Moscoso-Sánchez, O. J. Ríos Díaz, J. Flores, L. Martínez, V. V. A. Fernández, Polym. Bull., Effect of the cellulose of Agave tequilana Weber onto the mechanical properties of foamed and unfoamed polypropylene composites, 70 (2013) 837. [94] N. L. M. Robertson, J. A. Nychka, K. Alemaskin, J. D. Wolodko, J. Appl. Polym. Sci., Mechanical performance and moisture absorption of various natural fiber reinforced thermoplastic composites, 130 (2013) 969. [95] E. Pérez, L. Famá, S. G. Pardo, M. J. Abad, C. Bernal, Compos. Part B: Eng., Tensile and fracture behaviour of PP/wood flour composites, 43 (2012) 2795. [96] L. Sobczak, R. W. Lang, A. Haider, Compos. Sci. Technol., Polypropylene composites with natural fibers and wood – General mechanical property profiles 72 (2012) 550. [97] M. A. AlMaadeed, Z. Nógellová, M.Micušík, I. Novák, I. Krupa, Mater. Design, Mechanical, sorption and adhesive properties of composites based on low density polyethylene filled with date palm wood powder 53 (2014) 29. [98] R. N. Darie, M. Bercea, M. Kozlowski, I. Spiridon, Cellulose Chem. Technol., Evaluation of Properties of LDPE/ Oak Wood composites exposed to Artificial Ageing, 45 (2011) 127. [99] Omid Hosseinaei, Siqun Wang, Ali Akbar Enayati, Timothy G. Rials, Compos. A: Appl. Sci. Manuf., Effects of hemicellulose extraction on properties of wood flour and wood–plastic composites, 43 (2012) 686. [100] D. F. Steele, R. C. Moreton, J. N. Staniforth, P. M. Young, M. J. Tobyn, S. Edge, The AAPS Journal, Surface Energy of Microcrystalline Cellulose Determined by Capillary Intrusion and Inverse Gas Chromatography, 10 (2008) 498. [101] T. Pongprayoon, N. Yooprasert, P. Suwanmala, K. Hemvichian, Rad. Physics and Chem., Rubber products prepared from silica modified by radiation-induced admicellar polymerization, 81 (2012) 542. [102] F. Alaoulou, S. Boufi, N. Belgacem, A. Gandini, Colloid Polym. Sci., Adsorption of cationic surfactants and subsequent adsolubilization of organic compounds onto cellulose fibers, 283 (2004) 346. [103] Anonim, Photoemission of Electrons, https://www.chemistryviews.org/details/ezine/10463356/X-Ray_Photoelectron_Spectroscopy_XPS.html (Erişim tarihi: 15.01.2020) [104] T. Kondo, C. Sawatari, Polymer, A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. , 37 (1996) 393-399. [105] X. Gao, K. L. Chen, H. Zhang, L. C. Peng, Q. X. Liu, BioResources, Isolation and characterization of cellulose obtained from bagasse pith by oxygen-containing agents, 9 (2014) 4094. [106] J. X. Sun, X. F. Sun, H. Zhao, R. C. Sun, Polymer Degradation & Stability, Isolation and characterization of cellulose from sugarcane bagasse, 84 (2004) 33. [107] D. Chiolacu, F. Ciolacu, V. I. Popa, Cellulose Chem. Technol.,Amorphous Cellulose - Structure and Characterization, 45 (2011) 17. [108] S. Ramesh, K. H. Leen, K. Kumutha, A. K. Arof, Spectrochimica Acta Part A, FTIR studies of PVC/PMMA blend based polymer electrolytes, 66 (2007) 1238. [109] G. Duan, C. Zhang, A. Li, X. Yang, L. Lu, X. Wang, Nanoscale Res Lett, Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly(methyl methacrylate) Template, 3 (2008) 120. [110] C. Babaç, G. Güven, G. David, B. C. Simionescu, E. Pişkin, European Poly. Jour., Production of nanoparticles of methyl methacrylate and butyl methacrylate copolymers by microemulsion polymerization in the presence of maleic acid terminated poly(N-acetylethylenimine) macromonomers as cosurfactant, 40 (2004) 1949. [111] C. Ton-That, A. G. Shard, R. Daley, R. H. Bradley, Macromolecules, Effects of Annealing on the Surface Composition and Morphology of PS/ PMMA Blend, 33 (2000) 8455. [112] C. Babaç, G. Güven, G. David, B. C. Simionescu, E. Pişkin, European Poly. Jour., Production of nanoparticles of methyl methacrylate and butyl methacrylate copolymers by microemulsion polymerization in the presence of maleic acid terminated poly(N-acetylethylenimine) macromonomers as cosurfactant, 40 (2004) 1949. [113] H. Kaczmarek, A. Kaminska, A. Herk, Eur. Poly. Jour., Photooxidative degredation of poly(alkyl methacrylate)s, 36 (2000) 770. [114] N. Pekel, O. Güven, J. of App. Poly. Sci., Fourier Transform Infrared–Photoacoustic Spectroscopy of Poly (N-butyl methacrylate) Adsorbed from Solution on Alumina, 69 (1998) 1670. [115] P. S. Sindhu, Fundamentals of Molecular Spectroscopy, New Age Int. Pub., India, 227, 2016. [116] S. T. Sundar, M. M. Sain, K. Oksman, Carbohydrate Polym., Characterization of microcrystalline cellullose and cellulose long fiber modified by iron salt, 80 (2010) 42. [117] P. M. Karlsson, N. B. Esbjörnsson, Krister Holmberg, Jour. of Colloid and Interface Sci., Admicellar polymerization of methyl methacrylate on aluminum pigments, 337 (2009) 366. [118] N. W. Wlshereksi, S. H. Mohamed, A. Arifin, Z. Arifin, M. Ishak, Jour. of Physical Sci., Thermal Characterization of Poly(Methyl Methacrylate) Filled with Barium Titanate as Denture Base Material, 23 (2014) 23. [119] S. Chen, Z. Yang, F. Wang, Polymers, Investigation on the Properties of PMMA/ Reactive Halloysite Nanocomposites Based on Halloysite with Double Bonds, 10 (2018) 919. [120] J. M. Herrera-Alonso, Z. Sedlakova, E. Marand, Jour. of Membrane Sci., Gas barrier properties of nanocomposites based on in situ polymerized poly(n-butyl methacrylate) in the presence of surface modified montmorillonite, 349 (2010) 254. [121] Z. Czech, K. Agnieszka, P. Raganska, A. Antosik, J. Therm. Anal. Calorim, Thermal stability and degradation of selected poly (alkyl methacrylates) used in the polymer industry, 119 (2015) 1159. [122] Polymers: A Property Database , B. Ellis, R. Smith (eds.), 2nd Ed., Taylor & Francis Group, Florida, 226, 2009. [123] S. A. Kedzior, L. Graham, C. Moorlag, B. M. Dooley, A. D. Cranston, The Canadian Jour. of Chem. Eng., Poly(methyl methacrylate)- grafted cellulose nanocrystals: one-step synthesis, nanocomposite preparation, and characterization, 94 (2016) 813. [124] A. Boujemaoui, C. C. Sanchez, J. Engström, C. Bruce, L. Fogelström, A. Carlmark, E. Malmström, App. Materials & Interfaces, Polycaprolactone Nanocomposites Reinforced with Cellulose Nanocrystals Surface-Modified via Covalent Grafting or Physisorption: A Comparative Study, 9 (2017) 35310. [125] Y. Xie, S. Cai, Z. Hou, W. Li, Y. Wang, X. Zhang, W. Yang, Polymers, Surface Hydrophobic Modification of Microcrystalline Cellulose by Poly(methylhydro)siloxane Using Response Surface Methodology, 10 (2010) 1335. [126] M. Pan, X. Zhou, M. Chen, Bioresources, Cellulose Nanowhiskers Isolation and Properties from Acid Hydrolysis Combined with High Pressure Homogenization, 8 (2013) 938. [127] C. White, K. T. Tan, D. Hunston, K. Steffens, D. Stanley, S. K. Satija, B. Akgun, B. D. Vogt, Soft Matter, Mechanisms of criticality in environmental adhesion loss, Electronic Supplement, 2015. [128] B. Couturaud, A. Baldo, A.Mas, J. J. Robin, Jour. of Colloid and Interface Sci., Improvement of the interfacial compatibility between cellulose and poly(L-lactide) films by plasma-induced grafting of L-lactide: The evaluation of the adhesive properties using a peel test, 448 (2015) 430. [129] Y. Xie, S. Cai, Z. Hou, W. Li, Y. Wang, X. Zhang, W. Yang, Polymers, Surface Hydrophobic Modification of Microcrystalline Cellulose by Poly(methylhydro)siloxane Using Response Surface Methodology, 10 (2010) 1335. [130] Z. Q. Hua, R. Sitaru, F. Denes, R. A. Young, Plasmas and Polymers, Mechanisms of Oxygen- and Argon-RF-Plasma Induced Surface Chemistry of Cellulose, 2 (1997) 206. [131] T. N. Tran, U. Paul, J. A. Heredia-Guerrero, I. Liakos, S. Marras, A. Scarpellini, F. Ayadi, A. Athanassiou, I. S. Bayer, Chem. Eng. Jour., Transparent and flexible amorphous cellulose-acrylic hybrids, 287 (2016) 201. [132] A. S. Romanchenkoa, A. V. Levdanskya, V. A. Levdanskya, B. N. Kuznetsov, Russian Journal of Bioorganic Chemistry, Study of Cellulose Sulfates by Xray Photoelectron Spectroscopy, 41 (2015) 723. [133] H. Ju, X. Feng, Y. Ye, L. Zhang, H. Pan, C. Campbell, J. Zhu, The Jour. Physical Chem., Ca Carboxylate Formation at the Calcium/Poly(methyl methacrylate) Interface, 116 (2012) 20466. [134] D. Briggs, G. Beamson, Anal. Chem, Primary and Secondary Oxygen-Induced C1s Binding Energy Shifts in X-ray Photoelectron Spectroscopy of Polymers, 64 (1992) 1731. [135] K. Littunen, U. Hippi, L. Johansson, M. Österberg, T. Tammelin, J. Laine, J. Seppälä, Carbohydrate Polym., Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers, 84 (2011) 1044. [136] S. Affrossman, R. Jerome, S. A. O'Neill, T. Schmitt, M. Stamm, Colloid Polym Sci, Surface structure of thin film blends of polystyrene and poyl (n-butyl methacrylate), 278 (2000) 995. [137] Q. Yao, B. Fan, Y. Xiong, C. Jin, Q. Sun, C. Sheng, 3D assembly based on 2D structure of Cellulose Nanofibril/ Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water, Nature Sci. Report, China, 2017. [138] T. C. Ward, Jour. of Chemical Education, Molecular Weight and Molecular Weight Distributions in Synthetic Polymers, 58 (1981) 869. [139] J.E. Mark, Polymer Data Handbook, Oxford University Press, Inc., New York, 1999. [140] S. S. Rogers, National Bureau of Standarts, L. Mandelkern, Glass Formation in Polymers, I. The Glass Transitions of The Poly-(n-Alkyl Methacrylates), Washington, 988, 1957. [141] G. Wypych and Z. Wypych, Handbook of Solvent, Chem. Tec. Publishing, Canada (2001), 581. [142] M. Dixit, V. Mathur, S. Gupta, M. Baboo, K. Sharma and N.S. Saxena, Phase Transitions, Morphology, miscibility and mechanical properties of PMMA/PC blends, 82 (2009) 869. [143] Anonim, Mark-Houwink Parameters for Homopolymers, https://link.springer.com/content/pdf/bbm%3A978-3-662-03910-6%2F1.pdf, (Erişim tarihi: 18.01.2020)tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/22659
dc.description.abstractNowadays, plastics account for a significant fraction of municipal solid waste. Significant amount of these plastic wastes are polyolefins: LDPE, LLDPE, HDPE, PP, PET, PS and PVC. Recovery of these polyolefins for recycling causes reduction in their mechanical strength. This situation limits their use in a number of applications. If recycled polyolefins are combined with natural fibers in a composite structure, their mechanical properties can be improved substantially. By this means, their usage areas and market share can be extended while their fraction of solid waste can be reduced. In the use of natural fibers in composites, incompatibility between hydrophilic fibers and the hydrophobic polymers results in a poor compatibility and in poor ability to transfer stress from the matrix to reinforcing fiber. Among many uses of cellulose, it also commonly serve as natural fiber in polymer composites. Because of its polarity and hydrophilicity, cellulose is less compatible with hydrophobic and nonpolar polyolefins. This causes poor dispersion of fillers and weak interaction between matrix and cellulose filler. Cellulose fiber composites can also have poor mechanical properties due to swelling. Cellulose's hidrophilicity renders its potential usage as a filler. The aim of this study is to reduce the hydrophilicity of cellulose surface and increase the compatibility of cellulose with polyolefins as well as its usage in composites. Although many hydrophobization methods applied to cellulose in literature, admicellar polymerization, an easy, clean and cost efficient method that comprises water as a solvent, and less purification steps, has not been investigated adequately, yet. Thus the subject of this thesis work is using admicellar polymerization in hydrophobization of microcrystalline cellulose, in order to obtain a coast efficient, water and moisture resistant filler. The product can be used as micro filler in polyolefin based composites and in applications of hidrophobic cellulose. By use of ammonium persulfate as an initiator, microcrystalline cellulose (MCC) surface is modified with PMMA and PnBMA polymers by admicellar polymerization. Percent modification yield is gravimetrically investigated for each modification parameter. ATR - FTIR analysis are carried out to characterize surface functional groups of modified polymers. Water contact angle of MCC surface is increased from 33.5° to 57.0° by modification. TGA is used for investigation of the thermal decomposition of pure MCC, modified MCC and modified polymers alone. By XPS analysis, the elements of alkyl methacrylates modified on surface, are analyzed. With SEC measurements, molecular weights, molecular weight distributions and polydispersity indexes of surface polymers are investigated. PDI's are measured 1.87 and 1.46 for PMMA and PnBMA polymers, respectively. Glass transition temperatures of PMMA and PnBMA polymers measured as 82° and 21° by DSC measurements. Finally by SEM analysis, the topography of PMMA and PnBMA modified MCC surface is revealed that surface modifications are successfully achieved.tr_TR
dc.language.isoturtr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectYüzey modifikasyonutr_TR
dc.subjectMikrokristal selüloztr_TR
dc.subjectHidrofobiktr_TR
dc.subjectMisel arayüzü polimerizasyonutr_TR
dc.subjectAdmicellar polymerizationtr_TR
dc.subject.lcshKimyatr_TR
dc.titleMisel Arayüzü Polimerizasyon Yöntemi İle Mikrokristal Selüloz Yüzeylerin Sulu Ortamda Hidrofobik Modifikasyonu ve Karakterizasyonutr_TR
dc.typeinfo:eu-repo/semantics/masterThesistr_TR
dc.description.ozetGünümüzde plastik atıklar, kentsel katı atıkların büyük bir kısmını oluşturmaktadır. Plastik atıkların büyük bir kısmını da poliolefinler olarak adlandırılan LDPE, LLDPE, HDPE, PP, PET, PS ve PVC gibi polimerler oluşturmaktadır. Bu polimerler geri dönüşüme uğradıklarında, mekanik özelliklerinde belirgin bir gerileme gözlenmektedir. Bu da kullanım alanlarını kısıtlamaktadır. Geri dönüşüme uğramış plastiklerle doğal fiberler kompozit yapıldığı takdirde, dayanıklılık ve sürtünme direnci önemli oranda arttırılarak kullanım alanları genişletilebilir. Bu sayede katı atık oluşumu azaltılabilir. Doğal fiberlerin kompozitlerde kullanımında hidrofobik polimerlerle hidrofilik fiberlerin uyumluluğunun az olması sonucu, polimer matriksten dayanımı sağlayan fibere stres transferi zayıf olmaktadır. Pek çok kullanım alanı arasında selüloz, polimer kompozitlerinde doğal fiber olarak yaygın bir şekilde kullanılmaktadır. Selüloz, polaritesi ve hidrofilikliği yüzünden hidrofobik ve polar olmayan poliolefinlerle çok az uyumludur. Bu da dolgu maddesi olarak zayıf karışmaya ve matriksle dolgu arasında zayıf etkileşime neden olmaktadır. Selüloz fiber kompozitler ayrıca şişmeye bağlı olarak zayıf mekanik özelliklere sahip olmaktadır. Selülozun hidrofilik oluşu hidrofobik poliolefinlerde dolgu maddesi olarak kullanımını azaltmaktadır. Bu tez çalışmasının amacı, selüloz yüzeyinin hidrofilikliğini azaltarak poliolefinlerle uyumluluğunu arttırmak, bu sayede kompozitlerde dolgu maddesi olarak kullanımını arttırmaktır. Selülozun hidrofobik hale getirilmesi için literatürde çok çeşitli yöntemler çalışıldığı halde, çözücü olarak suyun kullanıldığı, ekstra saflaştırma basamakları gerektirmeyen, düşük maliyetli, kolay ve temiz bir yöntem olan misel arayüzü polimerizasyonu üzerine yeterince çalışma yapılmamıştır. Bu nedenle bu tezin konusu olarak misel arayüzü polimerizasyon yöntemi ile mikrokristal selülozdan (MKS) düşük maliyetli, suya ve neme dayanıklı, hidrofobik yeni bir katkı maddesi elde edilmeye çalışılmıştır. Elde edilen ürün poliolefin esaslı kompozitlerde mikro dolgu maddesi olarak kullanılabilmesinin yanında, selülozun hidrofobik olması istenen farklı uygulamalarda da kullanılabilecektir. Mikrokristal selüloz yüzeyi amonyum persülfat başlatıcı kullanılarak misel arayüzü polimerizasyon yöntemiyle poli(metil metakrilat) (PMMA) ve poli(n-bütil metakrilat) (PnBMA) polimerleri ile kaplanmıştır. Her bir modifikasyon için gravimetrik olarak yüzde modifikasyon verimi araştırılmıştır. ATR-FTIR analizleri ile yüzeydeki polimerlere ait fonksiyonel gruplar karakterize edilmiştir. MKS yüzeyin su temas açısı 33,5°’den 57,0°’ye çıkarılarak hidrofobik karakteri arttırılmıştır. Termogravimetrik Analiz (TGA) ile MKS yüzeyinde elde edilen PMMA ve PnBMA polimerlerinin sıcaklıkla bozunma davranışları incelenmiştir. X-ışını Fotoelektron Spektroskopisi (XPS) ile selüloz yüzeye modifiye edilen polimerler analiz edilmiştir. Büyüklükçe Ayırma Kromatografisi (SEC) ölçümleri ile MKS yüzeyine kaplanan PMMA ve PnBMA polimerlerinin molekül ağırlıkları belirlenmiş ve polidispersite indeksleri (PDI) sırasıyla 1,87 ve 1,46 olarak ölçülmüştür. Diferansiyel Taramalı Kalorimetri (DSC) ile MKS yüzeyinde elde edilen PMMA ve PnBMA polimerlerinin camsı geçiş sıcaklıklarının 82° ve 21° olduğu görülmüştür. Taramalı Elektron Mikroskobu (SEM) ile PMMA ve PnBMA kaplanan MKS yüzeyin topoğrafyası incelenerek kaplamanın yüzeyde meydana getirdiği değişimler gözlenmiştir. Sonuç olarak, MKS yüzeylerin misel arayüzü polimerizasyon yöntemi kullanılarak PMMA ve PnBMA ile modifikasyonu başarılı bir şekilde gerçekleştirilmiş ve yüzey hidrofobikliği arttırılmıştır.tr_TR
dc.contributor.departmentKimyatr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2020-09-17T09:54:29Z
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster