Basit öğe kaydını göster

dc.contributor.authorOlsen, Rikke K. J.
dc.contributor.authorKonarikova, Eliska
dc.contributor.authorGiancaspero, Teresa A.
dc.contributor.authorTalim, Beril
dc.date.accessioned2020-02-17T08:02:22Z
dc.date.available2020-02-17T08:02:22Z
dc.date.issued2016
dc.identifier.issn0002-9297
dc.identifier.urihttps://doi.org/10.1016/j.ajhg.2016.04.006
dc.identifier.urihttp://hdl.handle.net/11655/22108
dc.description.abstractMultiple acyl-CoA dehydrogenase deficiencies (MADDs) are a heterogeneous group of metabolic disorders with combined respiratory-chain deficiency and a neuromuscular phenotype. Despite recent advances in understanding the genetic basis of MADD, a number of cases remain unexplained. Here, we report clinically relevant variants in FLAD1, which encodes FAD synthase (FADS), as the cause of MADD and respiratory-chain dysfunction in nine individuals recruited from metabolic centers in six countries. In most individuals, we identified biallelic frameshift variants in the molybdopterin binding (MPTb) domain, located upstream of the FADS domain. Inasmuch as FADS is essential for cellular supply of FAD cofactors, the finding of biallelic frameshift variants was unexpected. Using RNA sequencing analysis combined with protein mass spectrometry, we discovered FLAD1 isoforms, which only encode the FADS domain. The existence of these isoforms might explain why affected individuals with biallelic FLAD1 frameshift variants still harbor substantial FADS activity. Another group of individuals with a milder phenotype responsive to riboflavin were shown to have single amino acid changes in the FADS domain. When produced in E. coli, these mutant FADS proteins resulted in impaired but detectable FADS activity; for one of the variant proteins, the addition of FAD significantly improved protein stability, arguing for a chaperone-like action similar to what has been reported in other riboflavin-responsive inborn errors of metabolism. In conclusion, our studies identify FLAD1 variants as a cause of potentially treatable inborn errors of metabolism manifesting with MADD and shed light on the mechanisms by which FADS ensures cellular FAD homeostasis.tr_TR
dc.language.isoentr_TR
dc.publisherCell Presstr_TR
dc.relation.isversionof10.1016/j.ajhg.2016.04.006tr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectMADDstr_TR
dc.subjectChain deficiencytr_TR
dc.subjectRiboflavintr_TR
dc.subjectMutationstr_TR
dc.subject.lcshSağlıktr_TR
dc.titleRiboflavin-Responsive and -Non-Responsive Mutations In Fad Synthase Cause Multiple Acyl-Coa Dehydrogenase And Combined Respiratory-Chain Deficiencytr_TR
dc.typeinfo:eu-repo/semantics/articletr_TR
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalAmerican Journal Of Human Geneticstr_TR
dc.contributor.departmentÇocuk Sağlığı ve Hastalıklarıtr_TR
dc.identifier.volume98tr_TR
dc.identifier.issue6tr_TR
dc.identifier.startpage1130tr_TR
dc.identifier.endpage1145tr_TR
dc.description.indexWoStr_TR
dc.description.indexScopustr_TR
dc.fundingYoktr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster