Show simple item record

dc.contributor.authorYarar-Fisher, Ceren
dc.contributor.authorPolston, Keith F. L.
dc.contributor.authorEraslan, Mualla
dc.contributor.authorHenley, Kathryn Y.
dc.contributor.authorKinikli, Gizem, I
dc.contributor.authorBickel, C. Scott
dc.contributor.authorWindham, Samuel T.
dc.contributor.authorMcLain, Amie B.
dc.contributor.authorOster, Robert A.
dc.contributor.authorBamman, Marcas M.
dc.date.accessioned2019-12-19T07:02:35Z
dc.date.available2019-12-19T07:02:35Z
dc.date.issued2018
dc.identifier.issn8750-7587
dc.identifier.urihttps://doi.org/10.1152/japplphysiol.01029.2017
dc.identifier.urihttp://hdl.handle.net/11655/20830
dc.description.abstractThis study compares the effects of an 8-wk isocaloric high-protein (HP) diet versus a combination exercise (Comb-Ex) regimen on paralytic vastus lateralis (VL) and nonparalytic deltoid muscle in individuals with long-standing spinal cord injury (SCI). Fiber-type distribution, cross-sectional area (CSA). levels of translation initiation signaling proteins (Erk-1/2, Akt, p70S6K1, 4EBP1, RPS6, and FAK), and lean thigh mass were analyzed at baseline and after the 8-wk interventions. A total of 11 participants (C5-T12 levels, 21.8 +/- 6.3 yr postinjury; 6 Comb-Ex and 5 HP diet) completed the study. Comb-Ex training occurred 3 days/wk and consisted of upper body resistance training (RT) in addition to neuromuscular electrical stimulation (NMES)-induced-RT for paralytic VL muscle. Strength training was combined with high-intensity arm-cranking exercises (1-min intervals at 85-90%, (V) over dotO(2peak)) for improving cardiovascular endurance. For the HP diet intervention, protein and fat each comprised 30%. and carbohydrate comprised 40% of total energy. Clinical tests and muscle biopsies were performed 24 h before and after the last exercise or diet session. The Comb-Ex intervention increased Type IIa myofiber distribution and CSA in VL muscle and Type I and IIa myofiber CSA in deltoid muscle. In addition, Comb-Ex increased lean thigh mass, (V) over dotO(2peak), and upper body strength (P < 0.05). These results suggest that exercise training is required to promote favorable changes in paralytic and nonparalytic muscles in individuals with long-standing SCI, and adequate dietary protein consumption alone may not be sufficient to ameliorate debilitating effects of paralysis. NEW & NOTEWORTHY This study is the first to directly compare the effects of an isocaloric high-protein diet and combination exercise training on clinical and molecular changes in paralytic and nonparalytic muscles of individuals with long-standing spinal cord injury. Our results demonstrated that muscle growth and fiber-type alterations can best be achieved when the paralyzed muscle is sufficiently loaded via neuromuscular electrical stimulation-induced resistance training.
dc.language.isoen
dc.publisherAmer Physiological Soc
dc.relation.isversionof10.1152/japplphysiol.01029.2017
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPhysiology
dc.subjectSport Sciences
dc.titleParalytic And Nonparalytic Muscle Adaptations To Exercise Training Versus High-Protein Diet In Individuals With Long-Standing Spinal Cord Injury
dc.typeinfo:eu-repo/semantics/article
dc.relation.journalJournal Of Applied Physiology
dc.contributor.departmentFizyoterapi ve Rehabilitasyon
dc.identifier.volume125
dc.identifier.issue1
dc.identifier.startpage64
dc.identifier.endpage72
dc.description.indexWoS


Files in this item

This item appears in the following Collection(s)

Show simple item record