Long-Circulating Peg-Pe Micelles Co-Loaded with Paclitaxel and Elacridar (Gg918) Overcome Multidrug Resistance
Tarih
2012Yazar
Sarisozen, Can
Vural, Imran
Levchenko, Tatyana
Hincal, A. Atilla
Torchilin, Vladimir P.
Üst veri
Tüm öğe kaydını gösterÖzet
Overexpression of drug efflux pump P-gp is one of the major reasons to cause multidrug resistance (MDR). To overcome P-gp mediated MDR, modulators, so called P-gp inhibitors, can be used to block efflux pump activity. Elacridar is one of the most potent P-gp inhibitors, which can cause irreversible and total P-gp blockage. Elacridar, among with other P-gp inhibitors, can be used in combination with anticancer drugs to enhance the effectiveness of chemotherapy against resistant tumor cells. On the other hand, P-gp is presented in normal tissues, thus nonselective blockage of P-gp can cause undesired side effects. Therefore, it is important to deliver P-gp inhibitor only to the tumor cells (along with anticancer drug) and limit its distribution in the body. In this study, we have developed PEG-PE-based long-circulating ca. 15 nm micelles co-loaded with elacridar and paclitaxel, and investigated their ability to overcome paclitaxel resistance in two cancer cell lines. Vitamin E, a common solubility enhancer for PEG-PE micelles, was found to have a negative effect on both particle size and encapsulation efficiencies. The human MDR1 gene-transfected and thus paclitaxel-resistant MDCKII-MDR1 P-gp overexpressing cells were used for cytotoxicity evaluation. Even though PEG-PE based micelles itself have a potential to enhance the cytotoxicity of paclitaxel, elacridar/paclitaxel-co-loaded micelles demonstrated the highest cytotoxicity compared to both free and micellar paclitaxel. The obtained results suggest that co-loading of paclitaxel and elacridar into micellar drug carriers results in promising preparations capable of overcoming paclitaxel resistance.