Structure-Activity Relationships Of Receptor Binding Of 1,4-Dihydropyridine Derivatives
Tarih
2008Yazar
Takahashi, Daiki
Oyunzul, LuvsandorJ
Onoue, Satoml
Ito, Yoshthlko
Uchida, Shinya
Simsek, Rahime
Gunduz, Miyase Gozde
Safak, Chiat
Yamada, Shizuo
Üst veri
Tüm öğe kaydını gösterÖzet
The present study was undertaken to investigate binding activity of synthesized 1,4-dihydropyridine (1,4-DHP) derivatives (Compounds 1-124) to 1,4-DHP calcium channel antagonist receptors in rat brain. Sixteen 1,4-DHP derivatives inhibited specific (+)-[H-3]PN 200-110 binding in rat brain in a concentration-dependent manner with IC50 value of 0.43 to 3.49 mu M. Scatchard analysis revealed that compounds 54, 69, 85, like nifedipine, caused a significant increase in apparent dissociation constant (K-d) for (+)-[H-3]PN 200-110, while compounds 68, 69 and 80 caused a significant decrease in maximal number of bindings sites (B-max). These data suggest that compounds 68, 69 and 80 exert longer-acting antagonistic effects of 1,4-DHP receptors than compounds 54, 69 and 85. The structure-activity relationship study has revealed that 1) ester groups in 3- and 5-positions are the most effective, 2) the aryl group in the 4-position of 1,4-DHP ring is the basic requirement for optimal activity, 3) position and type of electron-withdrawing groups on phenyl group at position 4 would affect the receptor-binding activity. Furthermore, compound 58 exerted alpha 1 receptor binding activity, being 1.6 times greater than 1,4-DHP receptors. Compounds 81, 84, 91, 94, 106, 108 and 109 showed significant binding of ATP-sensitive potassium (K-ATP) channel, and the binding activities of compounds 81, 84, 108 and 109 were 1.6-3.8 times greater than the binding activity for 1,4-DHP receptors. Compounds 91 and 106 had similar binding activity for K-ATP channel and 1,4-DHP receptors. In conclusion, the present study has shown that novel 1,4-DHP derivatives exert relatively high binding affinity to 1,4-DHP receptors and has revealed new aspect of structure-activity relationships of 1,4-DHP derivatives, especially hexahydroquinoline derivatives.