Basit öğe kaydını göster

dc.contributor.authorYayla, Oguz
dc.date.accessioned2019-12-16T09:40:10Z
dc.date.available2019-12-16T09:40:10Z
dc.date.issued2016
dc.identifier.issn1930-5346
dc.identifier.urihttps://doi.org/10.3934/amc.2016014
dc.identifier.urihttp://hdl.handle.net/11655/19820
dc.description.abstractA sequence of period n is called a nearly perfect sequence of type gamma if all out-of-phase autocorrelation coefficients are a constant gamma. In this paper we study nearly perfect sequences (NPS) via their connection to direct product difference sets (DPDS). We prove the connection between a p-ary NPS of period n and type gamma and a cyclic (n,p,n, n-gamma/p + gamma, 0, n-gamma/p)-DPDS for an arbitrary integer gamma. Next, we present the necessary conditions for the existence of a p-ary NPS of type gamma. We apply this result for excluding the existence of some p-ary NPS of period n and type gamma for n <= 100 and vertical bar gamma vertical bar <= 2. We also prove the similar results for an almost p-ary NPS of type gamma. Finally, we show the non-existence of some almost p-ary perfect sequences by showing the non-existence of equivalent cyclic relative difference sets by using the notion of multipliers.
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.isversionof10.3934/amc.2016014
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComputer Science
dc.subjectMathematics
dc.titleNearly Perfect Sequences With Arbitrary Out-Of-Phase Autocorrelation
dc.typeinfo:eu-repo/semantics/article
dc.relation.journalAdvances In Mathematics Of Communications
dc.contributor.departmentMatematik
dc.identifier.volume10
dc.identifier.issue2
dc.identifier.startpage401
dc.identifier.endpage411
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster