Basit öğe kaydını göster

dc.contributor.authorGood, Chris
dc.contributor.authorKopperman, Ralph
dc.contributor.authorYildiz, Filiz
dc.date.accessioned2019-12-16T09:40:07Z
dc.date.available2019-12-16T09:40:07Z
dc.date.issued2011
dc.identifier.issn0166-8641
dc.identifier.urihttps://doi.org/10.1016/j.topol.2010.12.002
dc.identifier.urihttp://hdl.handle.net/11655/19806
dc.description.abstractLet X, Y be sets with quasiproximities (sic)x and (sic)y (where A (sic) B is interpreted as "B isa neighborhood of A"). Let f.g : X -> Y be a pair of functions such that whenever C (sic)y D. then f(-1) vertical bar C vertical bar (sic)x g(-1)vertical bar D vertical bar. We show that there is then a function h : X -> Y such that whenever C (sic)y D. then f(-1)vertical bar C vertical bar (sic)x h(-1)vertical bar D vertical bar, h(-1)vertical bar C vertical bar (sic)x h(-1)vertical bar D vertical bar and h(-1)vertical bar C vertical bar (sic)x g(-1)vertical bar D vertical bar. Since any function It that satisfies h(-1) vertical bar C vertical bar (sic)x h(-1)vertical bar D vertical bar whenever C (sic)y D, is continuous, many classical "sandwich" or "insertion" theorems are corollaries of this result. The paper is written to emphasize the strong similarities between several concepts the posets with auxiliary relations studied in domain theory; quasiproximities and their simplification, Urysohn relations; and the axioms assumed by Katetov and by Lane to originally show some of these results. Interpolation results are obtained for continuous posets and Scott domains. We also show that (bi-)topological notions such as normality are captured by these order theoretical ideas. (C) 2010 Elsevier B.V. All rights reserved.
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.isversionof10.1016/j.topol.2010.12.002
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleInterpolating Functions
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalTopology And Its Applications
dc.contributor.departmentMatematik
dc.identifier.volume158
dc.identifier.issue4
dc.identifier.startpage582
dc.identifier.endpage593
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster