dc.contributor.author | Talebi, Yahya | |
dc.contributor.author | Hamzekolaee, Ali Reza Moniri | |
dc.contributor.author | Tercan, Adnan | |
dc.date.accessioned | 2019-12-16T09:40:06Z | |
dc.date.available | 2019-12-16T09:40:06Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1224-1784 | |
dc.identifier.uri | https://doi.org/10.2478/auom-2014-0059 | |
dc.identifier.uri | http://hdl.handle.net/11655/19803 | |
dc.description.abstract | In this paper we introduce beta** relation on the lattice of submodules of a module M. We say that submodules X, Y of M are beta** equivalent, X beta**Y, if and only if X+Y/X subset of Rad(M)+X/X and X+Y/Y subset of Rad(M)+Y/Y We show that the beta** relation is an equivalence relation. We also investigate some general properties of this relation. This relation is used to define and study classes of Goldie-Rad-supplemented and Rad-H-supplemented modules. We prove M = A circle plus B is Goldie-Rad-supplemented if and only if A and B are Goldie-Rad-supplemented. | |
dc.language.iso | en | |
dc.publisher | Ovidius Univ Press | |
dc.relation.isversionof | 10.2478/auom-2014-0059 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | Goldie-Rad-Supplemented Modules | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.relation.journal | Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 22 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 205 | |
dc.identifier.endpage | 218 | |
dc.description.index | WoS | |
dc.description.index | Scopus | |