dc.contributor.author | Khanmamedov, A. Kh. | |
dc.date.accessioned | 2019-12-16T09:39:49Z | |
dc.date.available | 2019-12-16T09:39:49Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0893-9659 | |
dc.identifier.uri | https://doi.org/10.1016/j.aml.2010.04.013 | |
dc.identifier.uri | http://hdl.handle.net/11655/19749 | |
dc.description.abstract | We prove that if the displacement coefficient of the damping of the 3D wave equation is a positive constant on the interval (-l, l), for large enough l > 0, then this equation has a strong global attractor in H(0)(1)(Omega) x L(2)(Omega). We also show that this attractor is a bounded subset of H(2)(Omega) boolean AND H(0)(1)(Omega) x H(0)(1)(Omega). (c) 2010 Elsevier Ltd. All rights reserved. | |
dc.language.iso | en | |
dc.publisher | Pergamon-Elsevier Science Ltd | |
dc.relation.isversionof | 10.1016/j.aml.2010.04.013 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | A Strong Global Attractor for the 3D Wave Equation with Displacement Dependent Damping | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.relation.journal | Applied Mathematics Letters | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 23 | |
dc.identifier.issue | 8 | |
dc.identifier.startpage | 928 | |
dc.identifier.endpage | 934 | |
dc.description.index | WoS | |
dc.description.index | Scopus | |