dc.contributor.author | Keskin Tutuncu, Derya | |
dc.contributor.author | Orhan Ertas, Nil | |
dc.contributor.author | Smith, Patrick F. | |
dc.contributor.author | Tribak, Rachid | |
dc.date.accessioned | 2019-12-16T09:39:26Z | |
dc.date.available | 2019-12-16T09:39:26Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1300-0098 | |
dc.identifier.uri | https://doi.org/10.3906/mat-1210-15 | |
dc.identifier.uri | http://hdl.handle.net/11655/19724 | |
dc.description.abstract | The snbmodule (Z)overbar(M) = boolean AND{N vertical bar M/N is small in its injective hull} was introduced by Talebi and Vanaja in 2002. A ring R is said to have property (P) if (Z)overbar(M) is a direct summand of M for every R-module M. It is shown that a commutative perfect ring R has (P) if and only if R is semisimple. An example is given to show that this characterization is not true for noncommutative rings. We prove that if R is a commutative ring such that the class {M is an element of Mod-R vertical bar <(Z)overbar >(R)(M) = 0} is closed under factor modules, then R has (P) if and only if the ring R is von Neumann regular. | |
dc.language.iso | en | |
dc.publisher | Scientific Technical Research Council Turkey-Tubitak | |
dc.relation.isversionof | 10.3906/mat-1210-15 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | Some Rings For Which The Cosingular Submodule Of Every Module Is A Direct Summand | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.relation.journal | Turkish Journal Of Mathematics | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 38 | |
dc.identifier.issue | 4 | |
dc.identifier.startpage | 649 | |
dc.identifier.endpage | 657 | |
dc.description.index | WoS | |
dc.description.index | Scopus | |