dc.contributor.author | Aydogdu, Pınar | |
dc.contributor.author | Er, Noyan | |
dc.contributor.author | Ertas, Nil Orhan | |
dc.date.accessioned | 2019-12-16T09:39:23Z | |
dc.date.available | 2019-12-16T09:39:23Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0017-0895 | |
dc.identifier.uri | https://doi.org/10.1017/S0017089512000183 | |
dc.identifier.uri | http://hdl.handle.net/11655/19706 | |
dc.description.abstract | Dedekind domains, Artinian serial rings and right uniserial rings share the following property: Every cyclic right module is a direct sum of uniform modules. We first prove the following improvement of the well-known Osofsky-Smith theorem: Acyclic module with every cyclic subfactor a direct sum of extending modules has finite Goldie dimension. So, rings with the above-mentioned property are precisely rings of the title. Furthermore, a ring R is right q.f.d. (cyclics with finite Goldie dimension) if proper cyclic (not congruent to R-R) right R-modules are direct sums of extending modules. R is right serial with all prime ideals maximal and boolean AND(n is an element of N)J(n) = J(m) for some m is an element of N if cyclic right R-modules are direct sums of quasi-injective modules. A right non-singular ring with the latter property is right Artinian. Thus, hereditary Artinian serial rings are precisely one-sided non-singular rings whose right and left cyclic modules are direct sums of quasi-injectives. | |
dc.language.iso | en | |
dc.publisher | Cambridge Univ Press | |
dc.relation.isversionof | 10.1017/S0017089512000183 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | Rings Whose Cyclic Modules Are Direct Sums Of Extending Modules | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.relation.journal | Glasgow Mathematical Journal | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 54 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 605 | |
dc.identifier.endpage | 617 | |
dc.description.index | WoS | |
dc.description.index | Scopus | |