Basit öğe kaydını göster

dc.contributor.authorAydogdu, Pınar
dc.contributor.authorEr, Noyan
dc.contributor.authorErtas, Nil Orhan
dc.date.accessioned2019-12-16T09:39:23Z
dc.date.available2019-12-16T09:39:23Z
dc.date.issued2012
dc.identifier.issn0017-0895
dc.identifier.urihttps://doi.org/10.1017/S0017089512000183
dc.identifier.urihttp://hdl.handle.net/11655/19706
dc.description.abstractDedekind domains, Artinian serial rings and right uniserial rings share the following property: Every cyclic right module is a direct sum of uniform modules. We first prove the following improvement of the well-known Osofsky-Smith theorem: Acyclic module with every cyclic subfactor a direct sum of extending modules has finite Goldie dimension. So, rings with the above-mentioned property are precisely rings of the title. Furthermore, a ring R is right q.f.d. (cyclics with finite Goldie dimension) if proper cyclic (not congruent to R-R) right R-modules are direct sums of extending modules. R is right serial with all prime ideals maximal and boolean AND(n is an element of N)J(n) = J(m) for some m is an element of N if cyclic right R-modules are direct sums of quasi-injective modules. A right non-singular ring with the latter property is right Artinian. Thus, hereditary Artinian serial rings are precisely one-sided non-singular rings whose right and left cyclic modules are direct sums of quasi-injectives.
dc.language.isoen
dc.publisherCambridge Univ Press
dc.relation.isversionof10.1017/S0017089512000183
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleRings Whose Cyclic Modules Are Direct Sums Of Extending Modules
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalGlasgow Mathematical Journal
dc.contributor.departmentMatematik
dc.identifier.volume54
dc.identifier.issue3
dc.identifier.startpage605
dc.identifier.endpage617
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster