Basit öğe kaydını göster

dc.contributor.authorGurgun, Orhan
dc.contributor.authorHalicioglu, Sait
dc.contributor.authorHarmanci, Abdullah
dc.date.accessioned2019-12-16T09:39:20Z
dc.date.available2019-12-16T09:39:20Z
dc.date.issued2013
dc.identifier.issn1224-1784
dc.identifier.urihttps://doi.org/10.2478/auom-2013-0048
dc.identifier.urihttp://hdl.handle.net/11655/19697
dc.description.abstractAn element a of a ring R is called quasipolar provided that there exists an idempotent p is an element of R such that p is an element of comm(2)(a), a + p is an element of U(R) and ap is an element of R-qnil. A ring R is quasipolar in case every element in R is quasipolar. In this paper, we determine conditions under which subrings of 3 x 3 matrix rings over local rings are quasipolar. Namely, if R is a bleached local ring, then we prove that J(3)(R) is quasipolar if and only if R is uniquely bleached. Furthermore, it is shown that T-n(R) is quasipolar if and only if T-n(R[[x]]) is quasipolar for any positive integer n.
dc.language.isoen
dc.publisherSciendo
dc.relation.isversionof10.2478/auom-2013-0048
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleQuasipolar Subrings of 3 X 3 Matrix Rings
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.relation.journalAnalele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica
dc.contributor.departmentMatematik
dc.identifier.volume21
dc.identifier.issue3
dc.identifier.startpage133
dc.identifier.endpage146
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster