dc.contributor.author | Gurgun, Orhan | |
dc.contributor.author | Halicioglu, Sait | |
dc.contributor.author | Harmanci, Abdullah | |
dc.date.accessioned | 2019-12-16T09:39:20Z | |
dc.date.available | 2019-12-16T09:39:20Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1224-1784 | |
dc.identifier.uri | https://doi.org/10.2478/auom-2013-0048 | |
dc.identifier.uri | http://hdl.handle.net/11655/19697 | |
dc.description.abstract | An element a of a ring R is called quasipolar provided that there exists an idempotent p is an element of R such that p is an element of comm(2)(a), a + p is an element of U(R) and ap is an element of R-qnil. A ring R is quasipolar in case every element in R is quasipolar. In this paper, we determine conditions under which subrings of 3 x 3 matrix rings over local rings are quasipolar. Namely, if R is a bleached local ring, then we prove that J(3)(R) is quasipolar if and only if R is uniquely bleached. Furthermore, it is shown that T-n(R) is quasipolar if and only if T-n(R[[x]]) is quasipolar for any positive integer n. | |
dc.language.iso | en | |
dc.publisher | Sciendo | |
dc.relation.isversionof | 10.2478/auom-2013-0048 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | Quasipolar Subrings of 3 X 3 Matrix Rings | |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.relation.journal | Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 21 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 133 | |
dc.identifier.endpage | 146 | |
dc.description.index | WoS | |
dc.description.index | Scopus | |