Qualitative Results on the Dynamics of A Berger Plate with Nonlinear Boundary Damping
Özet
The dynamics of a (nonlinear) Berger plate in the absence of rotational inertia are considered with inhomogeneous boundary conditions. In our analysis, we consider boundary damping in two scenarios: (i) free plate boundary conditions, or (ii) hinged-type boundary conditions. In either situation, the nonlinearity gives rise to complicating boundary terms. In the case of free boundary conditions we show that well-posedness of finite-energy solutions can be obtained via highly nonlinear boundary dissipation. Additionally, we show the existence of a compact global attractor for the dynamics in the presence of hinged-type boundary dissipation (assuming a geometric condition on the entire boundary (Lagnese, 1989)). To obtain the existence of the attractor we explicitly construct the absorbing set for the dynamics by employing energy methods that: (i) exploit the structure of the Berger nonlinearity, and (ii) utilize sharp trace results for the Euler-Bernoulli plate in Lasiecka and Triggiani (1993). We provide a parallel commentary (from a mathematical point of view) to the discussion of modeling with Berger versus von Karman nonlinearities: to wit, we describe the derivation of each nonlinear dynamics and a discussion of the validity of the Berger approximation. We believe this discussion to be of broad value across engineering and applied mathematics communities. (C) 2016 Elsevier Ltd. All rights reserved.