dc.contributor.author | Cimen, N | |
dc.date.accessioned | 2019-12-16T09:39:17Z | |
dc.date.available | 2019-12-16T09:39:17Z | |
dc.date.issued | 1998 | |
dc.identifier.issn | 0022-4049 | |
dc.identifier.uri | https://doi.org/10.1016/S0022-4049(97)00137-0 | |
dc.identifier.uri | http://hdl.handle.net/11655/19688 | |
dc.description.abstract | Let R be a commutative one-dimensional reduced local Noetherian ring whose integral closure (R) over tilde (in its total quotient ring) is a finitely generated R-module. We settle the last remaining unkown case of the following theorem by proving it for the case that some residue field of (R) over tilde is purely inseparable of degree 2 over the residue field of R. Theorem. Let R be a ring as above. R has, up to isomorphism, only finitely many indecomposable finitely generated maximal Cohen-Macaulay modules if and only if (1) is generated by 3 elements as art R-module; and (2) the intersection of the maximal R-submodules of (R) over tilde/R is a cyclic R-module. Moreover, over such a ring, the rank of every indecomposable maximal Cohen-Macaulay module of constant rank is 1,2, 3, 4, 5, 6, 8, 9 or 12. (C) 1998 Elsevier Science B.V. All rights reserved. | |
dc.language.iso | en | |
dc.publisher | Elsevier Science Bv | |
dc.relation.isversionof | 10.1016/S0022-4049(97)00137-0 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Mathematics | |
dc.title | One-Dimensional Rings Of Finite Cohen-Macaulay Type | |
dc.type | info:eu-repo/semantics/article | |
dc.relation.journal | Journal Of Pure And Applied Algebra | |
dc.contributor.department | Matematik | |
dc.identifier.volume | 132 | |
dc.identifier.issue | 3 | |
dc.identifier.startpage | 275 | |
dc.identifier.endpage | 308 | |
dc.description.index | WoS | |
dc.description.index | Scopus | |