Show simple item record

dc.contributor.authorCimen, N
dc.date.accessioned2019-12-16T09:39:17Z
dc.date.available2019-12-16T09:39:17Z
dc.date.issued1998
dc.identifier.issn0022-4049
dc.identifier.urihttps://doi.org/10.1016/S0022-4049(97)00137-0
dc.identifier.urihttp://hdl.handle.net/11655/19688
dc.description.abstractLet R be a commutative one-dimensional reduced local Noetherian ring whose integral closure (R) over tilde (in its total quotient ring) is a finitely generated R-module. We settle the last remaining unkown case of the following theorem by proving it for the case that some residue field of (R) over tilde is purely inseparable of degree 2 over the residue field of R. Theorem. Let R be a ring as above. R has, up to isomorphism, only finitely many indecomposable finitely generated maximal Cohen-Macaulay modules if and only if (1) is generated by 3 elements as art R-module; and (2) the intersection of the maximal R-submodules of (R) over tilde/R is a cyclic R-module. Moreover, over such a ring, the rank of every indecomposable maximal Cohen-Macaulay module of constant rank is 1,2, 3, 4, 5, 6, 8, 9 or 12. (C) 1998 Elsevier Science B.V. All rights reserved.
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.isversionof10.1016/S0022-4049(97)00137-0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleOne-Dimensional Rings Of Finite Cohen-Macaulay Type
dc.typeinfo:eu-repo/semantics/article
dc.relation.journalJournal Of Pure And Applied Algebra
dc.contributor.departmentMatematik
dc.identifier.volume132
dc.identifier.issue3
dc.identifier.startpage275
dc.identifier.endpage308
dc.description.indexWoS
dc.description.indexScopus


Files in this item

This item appears in the following Collection(s)

Show simple item record