Basit öğe kaydını göster

dc.contributor.authorOzcag, Emin
dc.contributor.authorEge, Inci
dc.contributor.authorGuercay, Hasmet
dc.contributor.authorJolevska-Tuneska, Biljana
dc.date.accessioned2019-12-16T09:39:16Z
dc.date.available2019-12-16T09:39:16Z
dc.date.issued2007
dc.identifier.issn1085-3375
dc.identifier.urihttps://doi.org/10.1155/2007/81907
dc.identifier.urihttp://hdl.handle.net/11655/19684
dc.description.abstractLet f and g be distributions and let g(n) = (g * delta(n))(x), where delta(n)(x) is a certain sequence converging to the Dirac-delta function delta( x). The noncommutative neutrix product f circle g of f and g is defined to be the neutrix limit of the sequence {f g(n)}, provided the limit h exists in the sense that N-lim(n ->infinity) < f (x) g(n)(x), phi(x)> = < h(x), phi( x)>, for all test functions in D. In this paper, using the concept of the neutrix limit due to van der Corput ( 1960), the noncommutative neutrix products x(+)(r) lnx(+)circle x(-r-1) lnx(-) and x(-)(-r-1) lnx(-) circle x(+)(r) lnx(+) are proved to exist and are evaluated for r = 1, 2,.... It is consequently seen that these two products are in fact equal. Copyright (c) 2007 Emin Ozcag et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.language.isoen
dc.publisherHindawi Publishing Corporation
dc.relation.isversionof10.1155/2007/81907
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.titleOn The Noncommutative Neutrix Product Of Distributions
dc.typeinfo:eu-repo/semantics/article
dc.relation.journalAbstract And Applied Analysis
dc.contributor.departmentMatematik
dc.description.indexWoS
dc.description.indexScopus


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster